Lin Rueyling
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Dev Biol. 2003 Jun 1;258(1):226-39. doi: 10.1016/s0012-1606(03)00119-2.
In vertebrates, oocytes undergo maturation, arrest in metaphase II, and can then be fertilized by sperm. Fertilization initiates molecular events that lead to the activation of early embryonic development. In Caenorhabditis elegans, where no delay between oocyte maturation and fertilization is apparent, oocyte maturation and fertilization must be tightly coordinated. It is not clear what coordinates the transition from an oocyte to an embryo in C. elegans, but regulated turnover of oocyte-specific proteins contributes to the process. We describe here a gain-of-function mutation (zu405) in a gene that is essential for oocyte maturation, oma-1. In wild type animals, OMA-1 protein is expressed at a high level exclusively in oocytes and newly fertilized embryos and is degraded rapidly after the first mitotic division. The zu405 mutation results in improper degradation of the OMA-1 protein in embryos. In oma-1(zu405) embryos, the C blastomere is transformed to the EMS blastomere fate, resulting in embryonic lethality. We show that degradation of several maternally supplied cell fate determinants, including SKN-1, PIE-1, MEX-3, and MEX-5, is delayed in oma-1(zu405) mutant embryos. In wild type embryos, SKN-1 functions in EMS for EMS blastomere fate specification. A decreased level of maternal SKN-1 protein in the C blastomere relative to EMS is believed to be responsible for this cell expressing the C, instead of the EMS, fate. Delayed degradation of maternal SKN-1 protein in oma-1(zu405) embryos and resultant elevated levels in C blastomere is likely responsible for the observed C-to-EMS blastomere fate transformation. These observations suggest that oma-1, in addition to its role in oocyte maturation, contributes to early embryonic development by regulating the temporal degradation of maternal proteins in early C. elegans embryos.
在脊椎动物中,卵母细胞会经历成熟过程,停滞于减数分裂中期II,然后可被精子受精。受精引发分子事件,进而导致早期胚胎发育的激活。在秀丽隐杆线虫中,卵母细胞成熟和受精之间没有明显延迟,卵母细胞成熟和受精必须紧密协调。目前尚不清楚是什么协调了秀丽隐杆线虫中从卵母细胞到胚胎的转变,但卵母细胞特异性蛋白质的调控性周转有助于这一过程。我们在此描述了一个对卵母细胞成熟至关重要的基因oma-1中的功能获得性突变(zu405)。在野生型动物中,OMA-1蛋白仅在卵母细胞和新受精的胚胎中高水平表达,并在第一次有丝分裂后迅速降解。zu405突变导致胚胎中OMA-1蛋白降解不当。在oma-1(zu405)胚胎中,C卵裂球转变为EMS卵裂球命运,导致胚胎致死。我们发现,在oma-1(zu405)突变胚胎中,包括SKN-1、PIE-1、MEX-З和MEX-5在内的几种母源供应的细胞命运决定因子的降解被延迟。在野生型胚胎中,SKN-1在EMS中发挥作用,以确定EMS卵裂球的命运。据信,相对于EMS,C卵裂球中母源SKN-1蛋白水平的降低是该细胞表达C而非EMS命运的原因。oma-1(zu405)胚胎中母源SKN-1蛋白的降解延迟以及C卵裂球中由此导致的水平升高,可能是观察到的C到EMS卵裂球命运转变的原因。这些观察结果表明,oma-1除了在卵母细胞成熟中发挥作用外,还通过调节秀丽隐杆线虫早期胚胎中母源蛋白的时间降解,对早期胚胎发育做出贡献。