Vera Julio, de Atauri Pedro, Cascante Marta, Torres Néstor V
Grupo Tecnología Bioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Islas Canarias, España.
Biotechnol Bioeng. 2003 Aug 5;83(3):335-43. doi: 10.1002/bit.10676.
In this study we present a method for simultaneous optimization of several metabolic responses of biochemical pathways. The method, based on the use of the power law formalism to obtain a linear system in logarithmic coordinates, is applied to ethanol production by Saccharomyces cerevisiae. Starting from an experimentally based kinetic model, we translated it to its power law equivalent. With this new model representation, we then applied the multiobjective optimization method. Our intent was to maximize ethanol production and minimize each of the internal metabolite concentrations. To ensure cell viability, all optimizations were carried out under imposed constraints. The different solutions obtained, which correspond to alternative patterns of enzyme overexpression, were implemented in the original model. We discovered few discrepancies between the S-system-optimized steady state and the corresponding optimized state in the original kinetic model, thus demonstrating the suitability of the S-system representation as the basis for the optimization procedure. In all optimized solutions, the ATP level reached its maximum and any increase in its activity positively affected the optimization process. This work illustrates that in any optimization study no single criteria is of general application being the multiobjective and constrained task the proper way to address it. It is concluded that the proposed multiobjective method can serve to carry out, in a single study, the general pattern of behavior of a given metabolic system with regard to its control and optimization.
在本研究中,我们提出了一种同时优化生化途径多种代谢反应的方法。该方法基于使用幂律形式主义在对数坐标中获得线性系统,应用于酿酒酵母的乙醇生产。从基于实验的动力学模型出发,我们将其转化为等效的幂律模型。利用这种新的模型表示,我们随后应用了多目标优化方法。我们的目的是使乙醇产量最大化,并使每种内部代谢物浓度最小化。为确保细胞活力,所有优化均在施加的约束条件下进行。所获得的不同解决方案对应于酶过表达的替代模式,并在原始模型中得以实现。我们发现S系统优化的稳态与原始动力学模型中的相应优化状态之间几乎没有差异,从而证明了S系统表示作为优化过程基础的适用性。在所有优化解决方案中,ATP水平达到最大值,其活性的任何增加都对优化过程产生积极影响。这项工作表明,在任何优化研究中,没有单一标准具有普遍适用性,多目标和受约束的任务才是解决问题的正确方式。得出的结论是,所提出的多目标方法可用于在单一研究中确定给定代谢系统在控制和优化方面的一般行为模式。