Pozo Carlos, Marín-Sanguino Alberto, Alves Rui, Guillén-Gosálbez Gonzalo, Jiménez Laureano, Sorribas Albert
Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Spain.
BMC Syst Biol. 2011 Aug 25;5:137. doi: 10.1186/1752-0509-5-137.
Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization.
Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity.
Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
为生物技术目的而设计新的工程微生物菌株,将极大地受益于为待优化过程开发现实的数学模型。然后可以分析这些模型,并通过开发和应用适当的优化技术,确定为实现所需生物技术目标而需要对生物体进行的修饰。由于执行此类分析的适当模型必然是非线性的且通常是非凸的,找到它们的全局最优解是一项具有挑战性的任务。规范建模技术,如基于幂律形式主义的广义质量作用(GMA)模型,为这个问题提供了一种可能的解决方案,因为它们具有一种数学结构,能够开发用于全局优化的特定算法。
基于GMA规范表示,我们在之前的工作中开发了一种高效的优化算法和一组相关策略,用于理解细胞代谢中适应性反应的演变。在这里,我们探索将动力学非线性模型重铸为等效GMA模型的可能性,以便对重铸后的GMA模型进行全局优化。通过这种技术,优化得到了极大的便利,并且结果可以转换到原始的非线性问题。对于一类特定的非线性模型,即扩展幂律形式主义以处理饱和度和协同性的饱和与协同(SC)模型,这个过程很直接。
我们的结果表明,将非线性动力学模型重铸为GMA模型确实是一种合适的策略,有助于克服全局优化任务中出现的一些数值困难。