Bödeker H U, Röttger M C, Liehr A W, Frank T D, Friedrich R, Purwins H-G
Institut für Angewandte Physik, Corrensstrasse 2/4, 48149 Münster, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056220. doi: 10.1103/PhysRevE.67.056220. Epub 2003 May 28.
The trajectories of propagating self-organized, well-localized solitary patterns (dissipative solitons) in the form of electrical current filaments are experimentally investigated in a planar quasi-two-dimensional dc gas-discharge system with high Ohmic semiconductor barrier. Earlier phenomenological models qualitatively describing the experimental observations in terms of a particle model predict a transition from stationary filaments to filaments traveling with constant finite speed due to an appropriate change of the system parameters. This prediction motivates a search for a drift bifurcation in the experimental system, but a direct comparison of experimentally recorded trajectories with theoretical predictions is impossible due to the strong influence of noise. To solve this problem, the filament dynamics is modeled using an appropriate Langevin equation, allowing for the application of a stochastic data analysis technique to separate deterministic and stochastic parts of the dynamics. Simulations carried out with the particle model demonstrate the efficiency of the method. Applying the technique to the experimentally recorded trajectories yields good agreement with the predictions of the model equations. Finally, the predicted drift bifurcation is found using the semiconductor resistivity as control parameter. In the resulting bifurcation diagram, the square of the equilibrium velocity scales linearly with the control parameter.
在具有高欧姆半导体势垒的平面准二维直流气体放电系统中,对以电流细丝形式传播的自组织、定位良好的孤立模式(耗散孤子)的轨迹进行了实验研究。早期的现象学模型用粒子模型定性地描述实验观测结果,预测由于系统参数的适当变化,会从静止细丝转变为以恒定有限速度行进的细丝。这一预测促使人们在实验系统中寻找漂移分岔,但由于噪声的强烈影响,无法将实验记录的轨迹与理论预测进行直接比较。为了解决这个问题,使用适当的朗之万方程对细丝动力学进行建模,从而可以应用随机数据分析技术来分离动力学的确定性部分和随机部分。用粒子模型进行的模拟证明了该方法的有效性。将该技术应用于实验记录的轨迹,与模型方程的预测结果吻合良好。最后,以半导体电阻率作为控制参数,发现了预测的漂移分岔。在得到的分岔图中,平衡速度的平方与控制参数呈线性比例关系。