Boujo E, Noiray N
CAPS Laboratory, Mechanical and Process Engineering Department, ETH Zürich, Switzerland.
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20160894. doi: 10.1098/rspa.2016.0894. Epub 2017 Apr 12.
We present a model-based output-only method for identifying from time series the parameters governing the dynamics of stochastically forced oscillators. In this context, suitable models of the oscillator's damping and stiffness properties are postulated, guided by physical understanding of the oscillatory phenomena. The temporal dynamics and the probability density function of the oscillation amplitude are described by a Langevin equation and its associated Fokker-Planck equation, respectively. One method consists in fitting the postulated analytical drift and diffusion coefficients with their estimated values, obtained from data processing by taking the short-time limit of the first two transition moments. However, this limit estimation loses robustness in some situations-for instance when the data are band-pass filtered to isolate the spectral contents of the oscillatory phenomena of interest. In this paper, we use a robust alternative where the adjoint Fokker-Planck equation is solved to compute Kramers-Moyal coefficients exactly, and an iterative optimization yields the parameters that best fit the observed statistics simultaneously in a wide range of amplitudes and time scales. The method is illustrated with a stochastic Van der Pol oscillator serving as a prototypical model of thermoacoustic instabilities in practical combustors, where system identification is highly relevant to control.
我们提出了一种基于模型的仅输出方法,用于从时间序列中识别控制随机强迫振荡器动力学的参数。在此背景下,根据对振荡现象的物理理解,假设了振荡器阻尼和刚度特性的合适模型。振荡幅度的时间动态和概率密度函数分别由朗之万方程及其相关的福克 - 普朗克方程描述。一种方法是将假设的解析漂移和扩散系数与其估计值进行拟合,这些估计值是通过对前两个跃迁矩取短时极限从数据处理中获得的。然而,这种极限估计在某些情况下会失去稳健性——例如,当对数据进行带通滤波以分离感兴趣的振荡现象的频谱内容时。在本文中,我们使用一种稳健的替代方法,即求解伴随福克 - 普朗克方程以精确计算克莱默斯 - 莫亚尔系数,并且通过迭代优化得到在广泛的幅度和时间尺度上同时最符合观测统计数据的参数。该方法通过一个随机范德波尔振荡器进行说明,该振荡器作为实际燃烧器中热声不稳定性的典型模型,其中系统识别与控制高度相关。