Zhou Haijun
Max-Planck-Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Apr;67(4 Pt 1):041908. doi: 10.1103/PhysRevE.67.041908. Epub 2003 Apr 21.
Given a complex biological or social network, how many clusters should it be decomposed into? We define the distance d(i,j) from node i to node j as the average number of steps a Brownian particle takes to reach j from i. Node j is a global attractor of i if d(i,j)< or =d(i,k) for any k of the graph; it is a local attractor of i if j in E(i) (the set of nearest neighbors of i) and d(i,j)< or =d(i,l) for any l in E(i). Based on the intuition that each node should have a high probability to be in the same community as its global (local) attractor on the global (local) scale, we present a simple method to uncover a network's community structure. This method is applied to several real networks and some discussion on its possible extensions is made.
对于一个复杂的生物或社会网络,应该将其分解为多少个簇呢?我们将从节点i到节点j的距离d(i,j)定义为布朗粒子从i到达j所采取的平均步数。如果对于图中的任何k,都有d(i,j) ≤ d(i,k),那么节点j就是i的全局吸引子;如果j属于E(i)(i的最近邻节点集)且对于E(i)中的任何l,都有d(i,j) ≤ d(i,l),那么j就是i的局部吸引子。基于这样一种直觉,即在全局(局部)尺度上,每个节点与其全局(局部)吸引子处于同一社区的概率应该很高,我们提出了一种简单的方法来揭示网络的社区结构。该方法应用于几个真实网络,并对其可能的扩展进行了一些讨论。