Suppr超能文献

对通过“症状”监测系统检测到的疾病暴发的调查。

Investigation of disease outbreaks detected by "syndromic" surveillance systems.

作者信息

Pavlin Julie A

机构信息

Department of Field Studies, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.

出版信息

J Urban Health. 2003 Jun;80(2 Suppl 1):i107-14. doi: 10.1007/pl00022321.

Abstract

Syndromic surveillance systems can detect potential disease outbreaks quickly and can provide useful tools to assist in outbreak investigation. The steps used to investigate diseases detected through these newer methods are not that different from traditional investigative measures, but the differences and limitations of the systems must be understood. With syndromic surveillance systems, there is often readily available electronic demographic information that can help define the epidemic and direct disease control measures. The diagnosis needs to be confirmed as quickly as possible, however, as specific diagnostic information will be missing with early detection from nonspecific data. It is also important not to disregard smaller, nonsevere rises in disease incidence as they might be a harbinger of a worsening outbreak. The rapidity of most syndromic surveillance systems also requires an equally rapid response, and planning must be done to prioritize alert categories and the response sequence to best utilize the information available in these new systems.

摘要

症候群监测系统能够快速检测潜在的疾病暴发,并能提供有用的工具来协助暴发调查。通过这些新方法检测到的疾病的调查步骤与传统调查措施并没有太大不同,但必须了解这些系统的差异和局限性。对于症候群监测系统,通常有现成的电子人口统计信息,这些信息有助于界定疫情并指导疾病控制措施。然而,由于早期从非特异性数据中检测会缺少特定诊断信息,因此需要尽快确认诊断。同样重要的是,不要忽视疾病发病率较小的、不严重的上升,因为它们可能是疫情恶化的先兆。大多数症候群监测系统的快速性也需要同样快速的响应,必须进行规划以确定警报类别和响应顺序的优先级,以便最好地利用这些新系统中可用的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验