Suppr超能文献

融合肽与膜相互作用的热力学

Thermodynamics of fusion peptide-membrane interactions.

作者信息

Li Yinling, Han Xing, Tamm Lukas K

机构信息

Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, P.O. Box 800736, Charlottesville, Virginia 22908-0736, USA.

出版信息

Biochemistry. 2003 Jun 17;42(23):7245-51. doi: 10.1021/bi0341760.

Abstract

The fusion peptides of viral membrane fusion proteins play a key role in the mechanism of viral spike glycoprotein mediated membrane fusion. These peptides insert into the lipid bilayers of cellular target membranes where they adopt mostly helical secondary structures. To better understand how membranes may be converted to high-energy intermediates during fusion, it is of interest to know how much energy, enthalpy and entropy, is provided by the insertion of fusion peptides into lipid bilayers. Here, we describe a detailed thermodynamic analysis of the binding of analogues of the influenza hemagglutinin fusion peptide of different lengths and amino acid compositions. In small unilamellar vesicles, the interaction of these peptides with lipid bilayers is driven by enthalpy (-16.5 kcal/mol) and opposed by entropy (-30 cal mol(-1) K(-1)). Most of the driving force (deltaG = -7.6 kcal/mol) comes from the enthalpy of peptide insertion deep into the lipid bilayer. Enthalpic gains and entropic losses of peptide folding in the lipid bilayer cancel to a large extent and account for only about 40% of the total binding free energy. The major folding event occurs in the N-terminal segment of the fusion peptide. The C-terminal segment mainly serves to drive the N-terminus deep into the membrane. The fusion-defective mutations G1S, which causes hemifusion, and particularly G1V, which blocks fusion, have major structural and thermodynamic consequences on the insertion of fusion peptides into lipid bilayers. The magnitudes of the enthalpies and entropies of binding of these mutant peptides are reduced, their helix contents are reduced, but their energies of self-association at the membrane surface are increased compared to the wild-type fusion peptide.

摘要

病毒膜融合蛋白的融合肽在病毒刺突糖蛋白介导的膜融合机制中起关键作用。这些肽插入细胞靶膜的脂质双层中,在那里它们大多采用螺旋二级结构。为了更好地理解在融合过程中膜如何转化为高能中间体,了解融合肽插入脂质双层时提供了多少能量、焓和熵是很有意义的。在这里,我们描述了对不同长度和氨基酸组成的流感血凝素融合肽类似物结合的详细热力学分析。在小单层囊泡中,这些肽与脂质双层的相互作用由焓驱动(-16.5千卡/摩尔),并受到熵的对抗(-30卡摩尔-1开-1)。大部分驱动力(ΔG = -7.6千卡/摩尔)来自肽深入脂质双层的插入焓。肽在脂质双层中折叠的焓增和熵减在很大程度上相互抵消,仅占总结合自由能的约40%。主要的折叠事件发生在融合肽的N端片段。C端片段主要用于驱动N端深入膜内。导致半融合的融合缺陷突变G1S,特别是阻断融合的G1V,对融合肽插入脂质双层具有重大的结构和热力学影响。与野生型融合肽相比,这些突变肽结合的焓和熵的大小降低,它们的螺旋含量降低,但它们在膜表面的自缔合能增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验