Suppr超能文献

SARS-CoV-2 刺突融合肽重组成插入双层胶束的楔形结构。

Fusion Peptide of SARS-CoV-2 Spike Rearranges into a Wedge Inserted in Bilayered Micelles.

机构信息

Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 United States.

Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211 United States.

出版信息

J Am Chem Soc. 2021 Aug 25;143(33):13205-13211. doi: 10.1021/jacs.1c05435. Epub 2021 Aug 10.

Abstract

The receptor binding and proteolysis of Spike of SARS-CoV-2 release its S subunit to rearrange and catalyze viral-cell fusion. This deploys the fusion peptide for insertion into the cell membranes targeted. We show that this fusion peptide transforms from intrinsic disorder in solution into a wedge-shaped structure inserted in bilayered micelles, according to chemical shifts, N NMR relaxation, and NOEs. The globular fold of three helices contrasts the open, extended forms of this region observed in the electron density of compact prefusion states. In the hydrophobic, narrow end of the wedge, helices 1 and 2 contact the fatty acyl chains of phospholipids, according to NOEs and proximity to a nitroxide spin label deep in the membrane mimic. The polar end of the wedge may engage and displace lipid head groups and bind Ca ions for membrane fusion. Polar helix 3 protrudes from the bilayer where it might be accessible to antibodies.

摘要

SARS-CoV-2 的刺突蛋白通过受体结合和蛋白水解作用释放其 S 亚基,从而重新排列并催化病毒与细胞融合。这使得融合肽能够插入靶向的细胞膜。根据化学位移、NMR 弛豫和 NOE,我们表明,该融合肽在溶液中从固有无序状态转变为楔形结构,插入双层胶束中。三个螺旋的球状折叠与在紧凑预融合状态的电子密度中观察到的该区域的开放、延伸形式形成对比。在楔形的疏水、狭窄端,螺旋 1 和 2 与磷脂的脂肪酸链接触,根据 NOE 和与膜模拟物深处的一个氮氧自由基自旋标记的接近程度。楔形的极性端可能与脂质头部基团结合并结合 Ca 离子以进行膜融合。极性螺旋 3 从双层中突出,在那里它可能对抗体是可及的。

相似文献

1
Fusion Peptide of SARS-CoV-2 Spike Rearranges into a Wedge Inserted in Bilayered Micelles.
J Am Chem Soc. 2021 Aug 25;143(33):13205-13211. doi: 10.1021/jacs.1c05435. Epub 2021 Aug 10.
2
NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):407-415. doi: 10.1016/j.bbamem.2017.10.002. Epub 2017 Oct 5.
6
7
Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity.
J Struct Biol. 2021 Jun;213(2):107713. doi: 10.1016/j.jsb.2021.107713. Epub 2021 Mar 1.
8
Synthetic Neutralizing Peptides Inhibit the Host Cell Binding of Spike Protein and Block Infection of SARS-CoV-2.
J Med Chem. 2021 Oct 14;64(19):14887-14894. doi: 10.1021/acs.jmedchem.1c01440. Epub 2021 Sep 17.
9
SARS-CoV-2 fusion peptide sculpting of a membrane with insertion of charged and polar groups.
Structure. 2023 Oct 5;31(10):1184-1199.e3. doi: 10.1016/j.str.2023.07.015. Epub 2023 Aug 24.
10
Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.
PLoS One. 2020 Nov 10;15(11):e0241168. doi: 10.1371/journal.pone.0241168. eCollection 2020.

引用本文的文献

2
Resurrection of the Helical Hairpin Hypothesis for Understanding Coronavirus Fusion.
J Membr Biol. 2025 Jun 24. doi: 10.1007/s00232-025-00350-7.
3
SARS-CoV-2 FP1 Destabilizes Lipid Membranes and Facilitates Pore Formation.
Int J Mol Sci. 2025 Jan 15;26(2):686. doi: 10.3390/ijms26020686.
4
Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy.
Nat Commun. 2025 Jan 2;16(1):6. doi: 10.1038/s41467-024-55358-9.
5
Exploring the influence of anionic lipids in the host cell membrane on viral fusion.
Biochem Soc Trans. 2024 Dec 19;52(6):2593-2602. doi: 10.1042/BST20240833.
6
Conformational dynamics of SARS-CoV-2 Omicron spike trimers during fusion activation at single molecule resolution.
Structure. 2024 Nov 7;32(11):1910-1925.e6. doi: 10.1016/j.str.2024.09.008. Epub 2024 Oct 3.
9
Inhibition of endocytic uptake of severe acute respiratory syndrome coronavirus 2 and endo-lysosomal acidification by diphenoxylate.
Antimicrob Agents Chemother. 2024 Jun 5;68(6):e0034124. doi: 10.1128/aac.00341-24. Epub 2024 May 14.
10
Fusing Peptide Epitopes for Advanced Multiplex Serological Testing for SARS-CoV-2 Antibody Detection.
ACS Bio Med Chem Au. 2023 Aug 30;4(1):37-52. doi: 10.1021/acsbiomedchemau.3c00010. eCollection 2024 Feb 21.

本文引用的文献

1
A Trimeric Hydrophobic Zipper Mediates the Intramembrane Assembly of SARS-CoV-2 Spike.
J Am Chem Soc. 2021 Jun 16;143(23):8543-8546. doi: 10.1021/jacs.1c02394. Epub 2021 Jun 4.
2
NMR Model of the Entire Membrane-Interacting Region of the HIV-1 Fusion Protein and Its Perturbation of Membrane Morphology.
J Am Chem Soc. 2021 May 5;143(17):6609-6615. doi: 10.1021/jacs.1c01762. Epub 2021 Apr 21.
3
SARS-CoV-2 Fusion Peptide has a Greater Membrane Perturbating Effect than SARS-CoV with Highly Specific Dependence on Ca.
J Mol Biol. 2021 May 14;433(10):166946. doi: 10.1016/j.jmb.2021.166946. Epub 2021 Mar 18.
6
Distinct conformational states of SARS-CoV-2 spike protein.
Science. 2020 Sep 25;369(6511):1586-1592. doi: 10.1126/science.abd4251. Epub 2020 Jul 21.
7
Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein.
Nat Commun. 2020 Jul 17;11(1):3618. doi: 10.1038/s41467-020-17371-6.
8
Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins.
J Am Chem Soc. 2020 Jul 22;142(29):12715-12729. doi: 10.1021/jacs.0c04669. Epub 2020 Jul 8.
9
Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein.
Nat Commun. 2020 May 8;11(1):2317. doi: 10.1038/s41467-020-16165-0.
10
Cell entry mechanisms of SARS-CoV-2.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734. doi: 10.1073/pnas.2003138117. Epub 2020 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验