Mojarradi Mohammad, Binkley David, Blalock Benjamin, Andersen Richard, Ulshoefer Norbert, Johnson Travis, Del Castillo Linda
NASA Jet Propulsion Laboratory, Pasadena, CA 91109, USA.
IEEE Trans Neural Syst Rehabil Eng. 2003 Mar;11(1):38-42. doi: 10.1109/TNSRE.2003.810431.
This paper presents current research on a miniaturized neuroprosthesis suitable for implantation into the brain. The prosthesis is a heterogeneous integration of a 100-element microelectromechanical system (MEMS) electrode array, front-end complementary metal-oxide-semiconductor (CMOS) integrated circuit for neural signal preamplification, filtering, multiplexing and analog-to-digital conversion, and a second CMOS integrated circuit for wireless transmission of neural data and conditioning of wireless power. The prosthesis is intended for applications where neural signals are processed and decoded to permit the control of artificial or paralyzed limbs. This research, if successful, will allow implantation of the electronics into the brain, or subcutaneously on the skull, and eliminate all external signal and power wiring. The neuroprosthetic system design has strict size and power constraints with each of the front-end preamplifier channels fitting within the 400 x 400-microm pitch of the 100-element MEMS electrode array and power dissipation resulting in less than a 1 degree C temperature rise for the surrounding brain tissue. We describe the measured performance of initial micropower low-noise CMOS preamplifiers for the neuroprosthetic.
本文介绍了一种适用于植入大脑的小型化神经假体的当前研究情况。该假体是一个由100个元件的微机电系统(MEMS)电极阵列、用于神经信号前置放大、滤波、多路复用和模数转换的前端互补金属氧化物半导体(CMOS)集成电路,以及用于神经数据无线传输和无线功率调节的第二个CMOS集成电路组成的异构集成体。该假体旨在用于处理和解码神经信号以实现对人造肢体或瘫痪肢体进行控制的应用。这项研究如果成功,将能够把电子器件植入大脑或皮下颅骨,并消除所有外部信号和电源线。神经假体系统设计有严格的尺寸和功率限制,每个前端前置放大器通道都要适配在100个元件的MEMS电极阵列400×400微米的间距内,并且功耗要使得周围脑组织的温度升高不超过1摄氏度。我们描述了用于神经假体的初始微功率低噪声CMOS前置放大器的测量性能。