Suppr超能文献

开发一种机器学习原型模型以预测艾滋病毒感染者的生活质量指标。

Developing a Prototype Machine Learning Model to Predict Quality of Life Measures in People Living With HIV.

作者信息

Mercadal-Orfila Gabriel, Serrano López de Las Hazas Joaquin, Riera-Jaume Melchor, Herrera-Perez Salvador

机构信息

Pharmacy Department, Hospital Mateu Orfila, Maón, Spain.

Department of Biochemistry and Molecular Biology, Universitat de Les Illes Balears (UIB), Palma de Mallorca, Spain.

出版信息

Integr Pharm Res Pract. 2025 Jan 22;14:1-16. doi: 10.2147/IPRP.S492422. eCollection 2025.

Abstract

BACKGROUND

In the realm of Evidence-Based Medicine, introduced by Gordon Guyatt in the early 1990s, the integration of machine learning technologies marks a significant advancement towards more objective, evidence-driven healthcare. Evidence-Based Medicine principles focus on using the best available scientific evidence for clinical decision-making, enhancing healthcare quality and consistency by integrating this evidence with clinician expertise and patient values. Patient-Reported Outcome Measures (PROMs) and Patient-Reported Experience Measures (PREMs) have become essential in evaluating the broader impacts of treatments, especially for chronic conditions like HIV, reflecting patient health and well-being comprehensively.

PURPOSE

The study aims to leverage Machine Learning (ML) technologies to predict health outcomes from PROMs/PREMs data, focusing on people living with HIV.

PATIENTS AND METHODS

Our research utilizes a ML Random Forest Regression to analyze PROMs/PREMs data collected from over 1200 people living with HIV through the NAVETA telemedicine system.

RESULTS

The findings demonstrate the potential of ML algorithms to provide precise and consistent predictions of health outcomes, indicating high reliability and effectiveness in clinical settings. Notably, our ALGOPROMIA ML model achieved the highest predictive accuracy for questionnaires such as MOS30 VIH (Adj. = 0.984), ESTAR (Adj. = 0.963), and BERGER (Adj. = 0.936). Moderate performance was observed for the P3CEQ (Adj. = 0.753) and TSQM (Adj. = 0.698), reflecting variability in model accuracy across instruments. Additionally, the model demonstrated strong reliability in maintaining standardized prediction errors below 0.2 for most instruments, with probabilities of achieving this threshold being 96.43% for WHOQoL HIV Bref and 88.44% for ESTAR, while lower probabilities were observed for TSQM (44%) and WRFQ (51%).

CONCLUSION

The results from our machine learning algorithms are promising for predicting PROMs and PREMs in AIDS settings. This work highlights how integrating ML technologies can enhance clinical pharmaceutical decision-making and support personalized treatment strategies within a multidisciplinary integration framework. Furthermore, leveraging platforms like NAVETA for deploying these models presents a scalable approach to implementation, fostering patient-centered, value-based care.

摘要

背景

在20世纪90年代初由戈登·盖亚特引入的循证医学领域,机器学习技术的整合标志着朝着更客观、基于证据的医疗保健迈出了重要一步。循证医学原则侧重于利用现有的最佳科学证据进行临床决策,通过将这些证据与临床医生的专业知识和患者价值观相结合来提高医疗质量和一致性。患者报告的结果测量(PROMs)和患者报告的体验测量(PREMs)在评估治疗的更广泛影响方面变得至关重要,特别是对于像艾滋病毒这样的慢性病,全面反映患者的健康和福祉。

目的

本研究旨在利用机器学习(ML)技术从PROMs/PREMs数据预测健康结果,重点关注艾滋病毒感染者。

患者和方法

我们的研究利用ML随机森林回归分析通过NAVETA远程医疗系统从1200多名艾滋病毒感染者收集的PROMs/PREMs数据。

结果

研究结果表明ML算法有潜力对健康结果提供精确和一致的预测,表明在临床环境中具有高可靠性和有效性。值得注意的是,我们的ALGOPROMIA ML模型在诸如MOS30 VIH(调整后 = 0.984)、ESTAR(调整后 = 0.963)和BERGER(调整后 = 0.936)等问卷上实现了最高的预测准确性。观察到P3CEQ(调整后 = 0.753)和TSQM(调整后 = 0.698)的表现中等,反映了不同工具的模型准确性存在差异。此外,该模型在将大多数工具的标准化预测误差保持在0.2以下方面表现出很强的可靠性,对于WHOQoL HIV Bref达到该阈值的概率为96.43%,对于ESTAR为88.44%,而TSQM(44%)和WRFQ(51%)的概率较低。

结论

我们的机器学习算法的结果在预测艾滋病环境中的PROMs和PREMs方面很有前景。这项工作突出了整合ML技术如何能够在多学科整合框架内加强临床药物决策并支持个性化治疗策略。此外,利用像NAVETA这样的平台来部署这些模型提供了一种可扩展的实施方法,促进以患者为中心、基于价值的护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e73/11766232/917f0ebd3ab5/IPRP-14-1-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验