Gauthier O, Khairoun I, Bosco J, Obadia L, Bourges X, Rau C, Magne D, Bouler J M, Aguado E, Daculsi G, Weiss P
Laboratoire de Recherche sur les Matériaux d'Intérêt Biologique INSERM 99-03, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 01, France.
J Biomed Mater Res A. 2003 Jul 1;66(1):47-54. doi: 10.1002/jbm.a.10506.
The use of injectable calcium phosphate (CaP) biomaterials in noninvasive surgery should provide efficient bone colonization and implantation. Two different kinds of injectable biomaterials are presently under development: ionic hydraulic bone cements that harden in vivo after injection, and an association of biphasic calcium phosphate (BCP) ceramic granules and a water-soluble polymer vehicle (a technique particularly investigated by our group), providing an injectable CaP bone substitute (IBS). In our study, we compared these two approaches, using physicochemical characterizations and in vivo evaluations in light microscopy, scanning electron microscopy, and three-dimensional microtomography with synchrotron technology. Three weeks after implantation in rabbit bone, both biomaterials showed perfect biocompatibility and bioactivity, but new bone formation and degradation of the biomaterial were significantly greater for BCP granules than for ionic cement. Newly formed bone developed, binding the BCP granules together, whereas new bone grew only on the surface of the cement, which remained dense, with no obvious degradation 3 weeks after implantation. This study confirms that BCP granules carried by a cellulosic polymer conserve bioactivity and are conducive to earlier and more extensive bone substitution than a carbonated-hydroxyapatite bone cement. The presence of intergranular spaces in the BCP preparation, as shown on microtomography imaging, seems particularly favorable, allowing body fluids to reach each BCP granule immediately after implantation. Thus, the IBS functions as a completely interconnected ceramic with total open macroporosity. This new bone replacement approach should facilitate microinvasive bone surgery and local delivery of bone therapy agents.
可注射磷酸钙(CaP)生物材料在非侵入性手术中的应用应能实现高效的骨定植和植入。目前正在研发两种不同类型的可注射生物材料:注射后在体内硬化的离子型水硬性骨水泥,以及双相磷酸钙(BCP)陶瓷颗粒与水溶性聚合物载体的组合(这是我们团队特别研究的一种技术),可提供一种可注射的CaP骨替代物(IBS)。在我们的研究中,我们通过物理化学表征以及光学显微镜、扫描电子显微镜和同步加速器技术的三维显微断层扫描进行体内评估,对这两种方法进行了比较。在植入兔骨三周后,两种生物材料均显示出良好的生物相容性和生物活性,但BCP颗粒的新骨形成和生物材料降解明显大于离子型骨水泥。新形成的骨生长并将BCP颗粒结合在一起,而新骨仅在骨水泥表面生长,骨水泥在植入三周后仍保持致密,无明显降解。这项研究证实,由纤维素聚合物携带的BCP颗粒保留了生物活性,并且比碳酸羟基磷灰石骨水泥更有利于早期和更广泛的骨替代。显微断层扫描成像显示,BCP制剂中存在颗粒间间隙似乎特别有利,使得植入后体液能够立即到达每个BCP颗粒。因此,IBS起到了具有完全开放大孔隙率的完全相互连接陶瓷的作用。这种新的骨替代方法应有助于微创骨手术和骨治疗剂的局部递送。