Suppr超能文献

用于评估观测数据中系统误差的半自动敏感性分析。

Semi-automated sensitivity analysis to assess systematic errors in observational data.

作者信息

Lash Timothy L, Fink Aliza K

机构信息

Boston University School of Public Health, MA, USA.

出版信息

Epidemiology. 2003 Jul;14(4):451-8. doi: 10.1097/01.EDE.0000071419.41011.cf.

Abstract

BACKGROUND

Published epidemiologic research usually provides a quantitative assessment of random error for effect estimates, but no quantitative assessment of systematic error. Sensitivity analysis can provide such an assessment.

METHODS

We describe a method to reconstruct epidemiologic data, accounting for biases, and to display the results of repeated reconstructions as an assessment of error. We illustrate with a study of the effect of less-than-definitive therapy on breast cancer mortality.

RESULTS

We developed SAS code to reconstruct the data that would have been observed had a set of systematic errors been absent, and to convey the results. After 4,000 reconstructions of the example data, we obtained a median estimate of relative hazard equal to 1.5 with a 95% simulation interval of 0.8-2.8. The relative hazard obtained by conventional analysis equaled 2.0, with a 95% confidence interval of 1.2-3.4.

CONCLUSIONS

Our method of sensitivity analysis can be used to quantify the systematic error for an estimate of effect and to describe that error in figures, tables, or text. In the example, the sources of error biased the conventional relative hazard away from the null, and that error was not accurately communicated by the conventional confidence interval.

摘要

背景

已发表的流行病学研究通常会对效应估计值的随机误差进行定量评估,但不会对系统误差进行定量评估。敏感性分析可以提供这样一种评估。

方法

我们描述了一种重建流行病学数据的方法,该方法考虑了偏差,并将重复重建的结果作为误差评估进行展示。我们以一项关于不明确治疗对乳腺癌死亡率影响的研究为例进行说明。

结果

我们开发了SAS代码,用于重建在不存在一组系统误差的情况下本应观察到的数据,并传达结果。对示例数据进行4000次重建后,我们得到相对风险的中位数估计值为1.5,95%模拟区间为0.8 - 2.8。通过传统分析得到的相对风险为2.0,95%置信区间为1.2 - 3.4。

结论

我们的敏感性分析方法可用于量化效应估计值的系统误差,并以图表或文字形式描述该误差。在该示例中,误差来源使传统相对风险偏离无效值,且传统置信区间未能准确传达该误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验