Suppr超能文献

健康研究中测量错误变量的定量偏差分析:软件工具综述

Quantitative bias analysis for mismeasured variables in health research: a review of software tools.

作者信息

Wood Codie J C, Tilling Kate, Bartlett Jonathan W, Hughes Rachael A

机构信息

Institute of Statistical Sciences, School of Mathematics, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK.

MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Road, Bristol, BS8 2BN, UK.

出版信息

BMC Med Res Methodol. 2025 Aug 1;25(1):187. doi: 10.1186/s12874-025-02635-w.

Abstract

BACKGROUND

Measurement error and misclassification can cause bias or loss of power in epidemiological studies. Software performing quantitative bias analysis (QBA) to assess the sensitivity of results to mismeasurement are available. However, QBA is still not commonly used in practice, partly due to a lack of knowledge of these software implementations. The features and particular use cases of these tools have not been systematically evaluated.

METHODS

We reviewed and summarised the latest available software tools for QBA in relation to mismeasured variables in health research. We searched the electronic database Web of Science for studies published between [Formula: see text] January 2014 and [Formula: see text] May 2024 (inclusive). We included epidemiological studies that described the use of software tools for QBA in relation to mismeasurement. We also searched for tools catalogued on the CRAN archive, in Stata manuals, and via Stata's net command, available from within Stata or from the IDEAS/RePEc database. Tools were included if they were purpose-built, had documentation, and were applicable to epidemiological research. Data on the tools' features and use cases were then extracted from the full article texts and software documentation.

RESULTS

17 publicly available software tools for QBA were identified, accessible via R, Stata, and online web tools. The tools cover various types of analysis, including regression, contingency tables, mediation analysis, longitudinal analysis, survival analysis and instrumental variable analysis. However, there is a lack of software tools performing QBA for misclassification of categorical variables and measurement error outside of the classical model. Additionally, the existing tools often require specialist knowledge.

CONCLUSIONS

Despite the availability of several software tools, there are still gaps in the existing collection of tools that need to be addressed to enable wider usage of QBA in epidemiological studies. Efforts should be made to create new tools to assess multiple mismeasurement scenarios simultaneously, and also to increase the clarity of documentation for existing tools, and provide tutorials and examples for their usage. By doing so, the uptake of QBA techniques in epidemiology can be improved, leading to more accurate and reliable research findings.

摘要

背景

测量误差和错误分类可能导致流行病学研究中的偏差或效能损失。有软件可进行定量偏差分析(QBA)以评估结果对测量误差的敏感性。然而,QBA在实际中仍未得到广泛应用,部分原因是对这些软件的使用缺乏了解。这些工具的功能和特定用例尚未得到系统评估。

方法

我们回顾并总结了健康研究中与测量错误变量相关的QBA最新可用软件工具。我们在科学网电子数据库中搜索了2014年1月至2024年5月(含)期间发表的研究。我们纳入了描述使用QBA软件工具处理测量误差的流行病学研究。我们还在CRAN存档、Stata手册中以及通过Stata的net命令搜索了工具,这些工具可从Stata内部或IDEAS/RePEc数据库获取。如果工具是专门构建的、有文档记录且适用于流行病学研究,则将其纳入。然后从全文和软件文档中提取有关工具功能和用例的数据。

结果

确定了17种公开可用的QBA软件工具,可通过R、Stata和在线网络工具访问。这些工具涵盖各种类型的分析,包括回归分析、列联表分析、中介分析、纵向分析、生存分析和工具变量分析。然而,缺乏针对分类变量错误分类和经典模型之外测量误差进行QBA的软件工具。此外,现有工具通常需要专业知识。

结论

尽管有多种软件工具可用,但现有工具集仍存在差距,需要加以解决,以便在流行病学研究中更广泛地使用QBA。应努力创建新工具以同时评估多种测量误差情况,并提高现有工具文档的清晰度,提供使用教程和示例。通过这样做,可以提高QBA技术在流行病学中的应用,从而得出更准确可靠的研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29dd/12317562/8129f664206b/12874_2025_2635_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验