Miura Tetsuo, Urano Yasuteru, Tanaka Kumi, Nagano Tetsuo, Ohkubo Kei, Fukuzumi Shunichi
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
J Am Chem Soc. 2003 Jul 16;125(28):8666-71. doi: 10.1021/ja035282s.
Fluorescence properties of fluorescein-based probes are shown to be finely controlled by the rate of photoinduced electron transfer from the benzoic acid moiety (electron donor) to the singlet excited state of the xanthene moiety (electron acceptor fluorophore). The occurrence of photoinduced electron transfer is clearly evidenced by transient absorption spectra showing bands due to the radical cation of the electron donor moiety and the radical anion of the xanthene moiety, observed in laser flash photolysis experiments. The photoinduced electron transfer rates and the rates of back electron transfer follow the Marcus parabolic dependence of electron transfer rate on the driving force. Such a dependence provides for the first time a quantitative basis for a rational design principle which has high efficiency in modulating fluorescence properties of fluorescein-based probes.
基于荧光素的探针的荧光特性表明,可通过从苯甲酸部分(电子供体)到呫吨部分(电子受体荧光团)的单重激发态的光致电子转移速率进行精细控制。在激光闪光光解实验中观察到的瞬态吸收光谱清楚地证明了光致电子转移的发生,该光谱显示出由于电子供体部分的自由基阳离子和呫吨部分的自由基阴离子而产生的谱带。光致电子转移速率和反向电子转移速率遵循电子转移速率对驱动力的马库斯抛物线依赖性。这种依赖性首次为合理设计原理提供了定量基础,该原理在调节基于荧光素的探针的荧光特性方面具有很高的效率。