Majumdar Pinaki, Kumar Sanjeev
Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India.
Phys Rev Lett. 2003 Jun 13;90(23):237202. doi: 10.1103/PhysRevLett.90.237202. Epub 2003 Jun 10.
A zero temperature Anderson-Mott transition driven by spin disorder can be "tuned" by an applied magnetic field to achieve colossal magnetoconductance. Usually this is not possible since spin disorder by itself cannot localize a high density electron system. However, the presence of strong structural disorder can realize this situation, self-consistently generating a disordered magnetic ground state. We explore such a model, constructed to understand amorphous GdSi, and highlight the emergence of a spin glass phase, Anderson-Mott signatures in transport and tunneling spectra, and unusual magneto-optical conductivity. We solve a disordered strong coupling fermion-spin-lattice problem essentially exactly on finite systems and account for all the qualitative features observed in magnetism, transport, and the optical spectra in this system.
由自旋无序驱动的零温度安德森 - 莫特转变可以通过施加磁场进行“调节”,以实现巨大的磁导率。通常这是不可能的,因为自旋无序本身无法使高密度电子系统发生局域化。然而,强结构无序的存在可以实现这种情况,自洽地产生无序的磁基态。我们探索这样一个模型,构建该模型是为了理解非晶态GdSi,并突出自旋玻璃相的出现、输运和隧穿光谱中的安德森 - 莫特特征以及异常的磁光导率。我们在有限系统上基本精确地求解了一个无序强耦合费米子 - 自旋 - 晶格问题,并解释了该系统在磁性、输运和光谱中观察到的所有定性特征。