Yamamoto Miyako, Yamamoto Fumiya, Luong Trang T, Williams Tristan, Kominato Yoshihiko, Yamamoto Fumiichiro
Cancer Genetics and Epigenetics Program, Cancer Center, Burnham Institute, La Jolla, CA, USA.
Electrophoresis. 2003 Jul;24(14):2295-307. doi: 10.1002/elps.200305459.
We have developed an experimental system to study the expression of 68 human glycosyltransferase genes. Using this system, we examined the expression of those genes in 27 different tissues by the technique which we named systematic multiplex reverse transcription-polymerase chain reaction (SM RT-PCR). The panoramic view of a total of 1836 (68 x 27) expression data demonstrates that some glycosyltransferase genes are differentially expressed whereas some others are ubiquitously expressed. The data gathered provide more information on glycosyltransferase gene expression in tissues than any other paper published, and surpass in quantity all the information combined from previous publications. Although the expression profiling of glycosyltransferase genes alone may not directly explain the repertoires of oligosaccharides synthesized, it is an important step toward a better understanding of the gene expression network involved in oligosaccharide synthesis/degradation. Our modestly high-throughput gene expression study and the data analysis using a hierarchical clustering algorithm have allowed us to investigate the correlation between tissues and glycosyltransferase gene expression. Similar patterns of glycosyltransferase gene expression were observed in functionally and anatomically related tissues. All, but one, sexually related tissues formed a cluster in a tissue dendrogram, suggesting the involvement of sex hormones in the transcriptional control of many glycosyltransferase genes. Once established, the SM RT-PCR is cost- and time-efficient and requires small amounts of RNA as template. It is especially useful for the simultaneous analyses of multiple samples. Because of its simple design, the SM RT-PCR may offer an easy alternative in studying the expression of many other families of genes, as well as groups of related/unrelated genes, in various biological phenomena.
我们开发了一个实验系统来研究68个人类糖基转移酶基因的表达。利用这个系统,我们通过一种名为系统多重逆转录 - 聚合酶链反应(SM RT-PCR)的技术检测了这些基因在27种不同组织中的表达。总共1836个(68×27)表达数据的全景展示表明,一些糖基转移酶基因存在差异表达,而另一些则普遍表达。所收集的数据提供了比以往任何已发表论文更多的关于组织中糖基转移酶基因表达的信息,并且在数量上超过了以往所有出版物中信息的总和。尽管仅糖基转移酶基因的表达谱分析可能无法直接解释合成的寡糖种类,但它是朝着更好地理解参与寡糖合成/降解的基因表达网络迈出的重要一步。我们适度高通量的基因表达研究以及使用层次聚类算法的数据分析,使我们能够研究组织与糖基转移酶基因表达之间的相关性。在功能和解剖学相关的组织中观察到了相似的糖基转移酶基因表达模式。除了一个组织外,所有与性别相关的组织在组织树状图中形成了一个聚类,这表明性激素参与了许多糖基转移酶基因的转录调控。一旦建立,SM RT-PCR具有成本效益且省时,并且只需要少量RNA作为模板。它对于同时分析多个样本特别有用。由于其设计简单,SM RT-PCR可能为研究各种生物学现象中许多其他基因家族以及相关/不相关基因组的表达提供一种简便的替代方法。