Suppr超能文献

通过X射线干涉确定的僵直肌肉中肌球蛋白头部结构域的构象。

The conformation of myosin head domains in rigor muscle determined by X-ray interference.

作者信息

Reconditi M, Koubassova N, Linari M, Dobbie I, Narayanan T, Diat O, Piazzesi G, Lombardi V, Irving M

机构信息

Laboratorio di Fisiologia, Dipartimento di Biologia Animale e Genetica, University of Florence, Florence, Italy.

出版信息

Biophys J. 2003 Aug;85(2):1098-110. doi: 10.1016/S0006-3495(03)74547-0.

Abstract

In the absence of adenosine triphosphate, the head domains of myosin cross-bridges in muscle bind to actin filaments in a rigor conformation that is expected to mimic that following the working stroke during active contraction. We used x-ray interference between the two head arrays in opposite halves of each myosin filament to determine the rigor head conformation in single fibers from frog skeletal muscle. During isometric contraction (force T(0)), the interference effect splits the M3 x-ray reflection from the axial repeat of the heads into two peaks with relative intensity (higher angle/lower angle peak) 0.76. In demembranated fibers in rigor at low force (<0.05 T(0)), the relative intensity was 4.0, showing that the center of mass of the heads had moved 4.5 nm closer to the midpoint of the myosin filament. When rigor fibers were stretched, increasing the force to 0.55 T(0), the heads' center of mass moved back by 1.1-1.6 nm. These motions can be explained by tilting of the light chain domain of the head so that the mean angle between the Cys(707)-Lys(843) vector and the filament axis increases by approximately 36 degrees between isometric contraction and low-force rigor, and decreases by 7-10 degrees when the rigor fiber is stretched to 0.55 T(0).

摘要

在缺乏三磷酸腺苷的情况下,肌肉中肌球蛋白横桥的头部结构域以强直构象与肌动蛋白丝结合,这种构象预计类似于主动收缩期间工作冲程后的构象。我们利用每条肌球蛋白丝相对两半中两个头部阵列之间的X射线干涉来确定青蛙骨骼肌单纤维中的强直头部构象。在等长收缩(力为T(0))期间,干涉效应将来自头部轴向重复的M3 X射线反射分裂为两个峰,相对强度(高角度/低角度峰)为0.76。在低力(<0.05 T(0))下处于强直状态的去膜纤维中,相对强度为4.0,表明头部的质心向肌球蛋白丝中点移动了4.5纳米。当强直纤维被拉伸,力增加到0.55 T(0)时,头部的质心向后移动1.1 - 1.6纳米。这些运动可以通过头部轻链结构域的倾斜来解释,使得在等长收缩和低力强直之间,Cys(707)-Lys(843)向量与丝轴之间的平均角度增加约36度,而当强直纤维拉伸到0.55 T(0)时,该角度减小7 - 10度。

相似文献

1
The conformation of myosin head domains in rigor muscle determined by X-ray interference.
Biophys J. 2003 Aug;85(2):1098-110. doi: 10.1016/S0006-3495(03)74547-0.
2
The structural basis of the increase in isometric force production with temperature in frog skeletal muscle.
J Physiol. 2005 Sep 1;567(Pt 2):459-69. doi: 10.1113/jphysiol.2005.089672. Epub 2005 Jun 16.
4
X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
Biophys J. 1994 Dec;67(6):2422-35. doi: 10.1016/S0006-3495(94)80729-5.
5
Structure-function relation of the myosin motor in striated muscle.
Ann N Y Acad Sci. 2005 Jun;1047:232-47. doi: 10.1196/annals.1341.021.
7
Conformation of the myosin motor during force generation in skeletal muscle.
Nat Struct Biol. 2000 Jun;7(6):482-5. doi: 10.1038/75890.
9
Structural features of cross-bridges in isometrically contracting skeletal muscle.
Biophys J. 2002 May;82(5):2536-47. doi: 10.1016/S0006-3495(02)75597-5.
10
Elastic bending and active tilting of myosin heads during muscle contraction.
Nature. 1998 Nov 26;396(6709):383-7. doi: 10.1038/24647.

引用本文的文献

1
Anisotropic Elasticity of the Myosin Motor in Muscle.
Int J Mol Sci. 2022 Feb 25;23(5):2566. doi: 10.3390/ijms23052566.
2
Analysis methods and quality criteria for investigating muscle physiology using x-ray diffraction.
J Gen Physiol. 2021 Oct 4;153(10). doi: 10.1085/jgp.202012778. Epub 2021 Aug 5.
3
Myosin lever arm orientation in muscle determined with high angular resolution using bifunctional spin labels.
J Gen Physiol. 2019 Aug 5;151(8):1007-1016. doi: 10.1085/jgp.201812210. Epub 2019 Jun 21.
5
Difference in hydration structures between F-actin and myosin subfragment-1 detected by small-angle X-ray and neutron scattering.
Biophysics (Nagoya-shi). 2013 Jul 23;9:99-106. doi: 10.2142/biophysics.9.99. eCollection 2013.
6
Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH2 terminus of the RLC on β-myosin cross-bridge mechanics.
J Appl Physiol (1985). 2014 Dec 15;117(12):1471-7. doi: 10.1152/japplphysiol.00798.2014. Epub 2014 Oct 16.
7
The contributions of filaments and cross-bridges to sarcomere compliance in skeletal muscle.
J Physiol. 2014 Sep 1;592(17):3881-99. doi: 10.1113/jphysiol.2014.276196. Epub 2014 Jul 11.
8
Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.
J Physiol. 2014 Mar 1;592(5):1119-37. doi: 10.1113/jphysiol.2013.267849. Epub 2013 Dec 16.
9
RECENT IMPROVEMENTS IN SMALL ANGLE X-RAY DIFFRACTION FOR THE STUDY OF MUSCLE PHYSIOLOGY.
Rep Prog Phys. 2006 Oct 1;69(10):2709-2759. doi: 10.1088/0034-4885/69/10/R01.
10
Stiffness and fraction of Myosin motors responsible for active force in permeabilized muscle fibers from rabbit psoas.
Biophys J. 2007 Apr 1;92(7):2476-90. doi: 10.1529/biophysj.106.099549. Epub 2007 Jan 19.

本文引用的文献

1
Molecular modeling of averaged rigor crossbridges from tomograms of insect flight muscle.
J Struct Biol. 2002 Apr-May;138(1-2):92-104. doi: 10.1016/s1047-8477(02)00013-8.
2
Direct modeling of x-ray diffraction pattern from skeletal muscle in rigor.
Biophys J. 2002 Aug;83(2):1082-97. doi: 10.1016/S0006-3495(02)75232-6.
3
Orientation changes of the myosin light chain domain during filament sliding in active and rigor muscle.
J Mol Biol. 2002 May 17;318(5):1275-91. doi: 10.1016/s0022-2836(02)00189-4.
4
Mechanism of force generation by myosin heads in skeletal muscle.
Nature. 2002 Feb 7;415(6872):659-62. doi: 10.1038/415659a.
5
Axial disposition of myosin heads in isometrically contracting muscles.
Biophys J. 2001 Mar;80(3):1429-41. doi: 10.1016/S0006-3495(01)76115-2.
6
Evidence for cleft closure in actomyosin upon ADP release.
Nat Struct Biol. 2000 Dec;7(12):1147-55. doi: 10.1038/82008.
7
Three conformational states of scallop myosin S1.
Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11238-43. doi: 10.1073/pnas.200376897.
8
Conformation of the myosin motor during force generation in skeletal muscle.
Nat Struct Biol. 2000 Jun;7(6):482-5. doi: 10.1038/75890.
9
Structural mechanism of muscle contraction.
Annu Rev Biochem. 1999;68:687-728. doi: 10.1146/annurev.biochem.68.1.687.
10
Interference fine structure and sarcomere length dependence of the axial x-ray pattern from active single muscle fibers.
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7226-31. doi: 10.1073/pnas.97.13.7226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验