Suppr超能文献

一种两阶段无监督学习算法在皮质顶盖系统的神经网络模型中再现了多感官增强。

A two-stage unsupervised learning algorithm reproduces multisensory enhancement in a neural network model of the corticotectal system.

作者信息

Anastasio Thomas J, Patton Paul E

机构信息

Department of Molecular and Integrative Physiology, University of Illinois at Urbana/Champaign, Urbana, Illinois 61801, USA.

出版信息

J Neurosci. 2003 Jul 30;23(17):6713-27. doi: 10.1523/JNEUROSCI.23-17-06713.2003.

Abstract

Multisensory enhancement (MSE) is the augmentation of the response to sensory stimulation of one modality by stimulation of a different modality. It has been described for multisensory neurons in the deep superior colliculus (DSC) of mammals, which function to detect, and direct orienting movements toward, the sources of stimulation (targets). MSE would seem to improve the ability of DSC neurons to detect targets, but many mammalian DSC neurons are unimodal. MSE requires descending input to DSC from certain regions of parietal cortex. Paradoxically, the descending projections necessary for MSE originate from unimodal cortical neurons. MSE, and the puzzling findings associated with it, can be simulated using a model of the corticotectal system. In the model, a network of DSC units receives primary sensory input that can be augmented by modulatory cortical input. Connection weights from primary and modulatory inputs are trained in stages one (Hebb) and two (Hebb-anti-Hebb), respectively, of an unsupervised two-stage algorithm. Two-stage training causes DSC units to extract information concerning simulated targets from their inputs. It also causes the DSC to develop a mixture of unimodal and multisensory units. The percentage of DSC multisensory units is determined by the proportion of cross-modal targets and by primary input ambiguity. Multisensory DSC units develop MSE, which depends on unimodal modulatory connections. Removal of the modulatory influence greatly reduces MSE but has little effect on DSC unit responses to stimuli of a single modality. The correspondence between model and data suggests that two-stage training captures important features of self-organization in the real corticotectal system.

摘要

多感官增强(MSE)是指通过对不同感觉模态的刺激来增强对一种感觉模态的感觉刺激的反应。这一现象已在哺乳动物的上丘深层(DSC)的多感官神经元中得到描述,这些神经元的功能是检测刺激源(目标)并引导朝向它们的定向运动。MSE似乎提高了DSC神经元检测目标的能力,但许多哺乳动物的DSC神经元是单模态的。MSE需要顶叶皮质的某些区域向DSC进行下行输入。矛盾的是,MSE所需的下行投射源自单模态皮质神经元。可以使用皮质-上丘系统模型来模拟MSE及其相关的令人困惑的发现。在该模型中,一个DSC单元网络接收初级感觉输入,该输入可由调节性皮质输入增强。来自初级和调节性输入的连接权重分别在无监督两阶段算法的第一阶段(赫布)和第二阶段(赫布-反赫布)进行训练。两阶段训练使DSC单元从其输入中提取有关模拟目标的信息。它还使DSC发展出单模态和多感官单元的混合。DSC多感官单元的百分比由跨模态目标的比例和初级输入的模糊性决定。多感官DSC单元产生MSE,这取决于单模态调节连接。去除调节影响会大大降低MSE,但对DSC单元对单一模态刺激的反应影响很小。模型与数据之间的对应关系表明,两阶段训练捕捉了真实皮质-上丘系统中自组织的重要特征。

相似文献

2
Multimodality in the superior colliculus: an information theoretic analysis.上丘的多模态:信息论分析
Brain Res Cogn Brain Res. 2002 Jun;14(1):10-9. doi: 10.1016/s0926-6410(02)00057-5.
6
Multisensory integration in the superior colliculus: a neural network model.上丘中的多感官整合:一种神经网络模型。
J Comput Neurosci. 2009 Feb;26(1):55-73. doi: 10.1007/s10827-008-0096-4. Epub 2008 May 14.

引用本文的文献

2
Multisensory Integration Uses a Real-Time Unisensory-Multisensory Transform.多感官整合使用实时单感官-多感官转换。
J Neurosci. 2017 May 17;37(20):5183-5194. doi: 10.1523/JNEUROSCI.2767-16.2017. Epub 2017 Apr 27.
5
Impact of response duration on multisensory integration.反应时程对多感觉整合的影响。
J Neurophysiol. 2012 Nov;108(9):2534-44. doi: 10.1152/jn.00286.2012. Epub 2012 Aug 15.
8
An emergent model of multisensory integration in superior colliculus neurons.上丘神经元中多感觉整合的紧急模型。
Front Integr Neurosci. 2010 Mar 22;4:6. doi: 10.3389/fnint.2010.00006. eCollection 2010.
10
Modeling multisensory enhancement with self-organizing maps.使用自组织映射对多感官增强进行建模。
Front Comput Neurosci. 2009 Jun 24;3:8. doi: 10.3389/neuro.10.008.2009. eCollection 2009.

本文引用的文献

4
Multimodality in the superior colliculus: an information theoretic analysis.上丘的多模态:信息论分析
Brain Res Cogn Brain Res. 2002 Jun;14(1):10-9. doi: 10.1016/s0926-6410(02)00057-5.
5
Bimodal interactions in the superior colliculus of the behaving cat.行为猫上丘中的双峰相互作用。
J Neurosci. 2002 Apr 1;22(7):2826-34. doi: 10.1523/JNEUROSCI.22-07-02826.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验