Suppr超能文献

多感官整合使用实时单感官-多感官转换。

Multisensory Integration Uses a Real-Time Unisensory-Multisensory Transform.

作者信息

Miller Ryan L, Stein Barry E, Rowland Benjamin A

机构信息

Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.

Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157

出版信息

J Neurosci. 2017 May 17;37(20):5183-5194. doi: 10.1523/JNEUROSCI.2767-16.2017. Epub 2017 Apr 27.

Abstract

The manner in which the brain integrates different sensory inputs to facilitate perception and behavior has been the subject of numerous speculations. By examining multisensory neurons in cat superior colliculus, the present study demonstrated that two operational principles are sufficient to understand how this remarkable result is achieved: (1) unisensory signals are integrated continuously and in real time as soon as they arrive at their common target neuron and (2) the resultant multisensory computation is modified in shape and timing by a delayed, calibrating inhibition. These principles were tested for descriptive sufficiency by embedding them in a neurocomputational model and using it to predict a neuron's moment-by-moment multisensory response given only knowledge of its responses to the individual modality-specific component cues. The predictions proved to be highly accurate, reliable, and unbiased and were, in most cases, not statistically distinguishable from the neuron's actual instantaneous multisensory response at any phase throughout its entire duration. The model was also able to explain why different multisensory products are often observed in different neurons at different time points, as well as the higher-order properties of multisensory integration, such as the dependency of multisensory products on the temporal alignment of crossmodal cues. These observations not only reveal this fundamental integrative operation, but also identify quantitatively the multisensory transform used by each neuron. As a result, they provide a means of comparing the integrative profiles among neurons and evaluating how they are affected by changes in intrinsic or extrinsic factors. Multisensory integration is the process by which the brain combines information from multiple sensory sources (e.g., vision and audition) to maximize an organism's ability to identify and respond to environmental stimuli. The actual transformative process by which the neural products of multisensory integration are achieved is poorly understood. By focusing on the millisecond-by-millisecond differences between a neuron's unisensory component responses and its integrated multisensory response, it was found that this multisensory transform can be described by two basic principles: unisensory information is integrated in real time and the multisensory response is shaped by calibrating inhibition. It is now possible to use these principles to predict a neuron's multisensory response accurately armed only with knowledge of its unisensory responses.

摘要

大脑整合不同感觉输入以促进感知和行为的方式一直是众多猜测的主题。通过研究猫上丘中的多感觉神经元,本研究表明,有两个操作原则足以理解如何实现这一显著结果:(1)单感觉信号一旦到达它们的共同目标神经元,就会持续且实时地进行整合;(2)由此产生的多感觉计算在形状和时间上会被延迟的校准抑制所改变。通过将这些原则嵌入神经计算模型中,并利用该模型仅根据神经元对各个模态特定成分线索的反应来预测其逐时刻的多感觉反应,对这些原则的描述充分性进行了测试。结果证明这些预测高度准确、可靠且无偏差,并且在大多数情况下,与神经元在其整个持续时间内任何阶段的实际瞬时多感觉反应在统计学上没有显著差异。该模型还能够解释为什么在不同时间点的不同神经元中经常观察到不同的多感觉产物,以及多感觉整合的高阶特性,例如多感觉产物对跨模态线索时间对齐的依赖性。这些观察结果不仅揭示了这种基本的整合操作,还定量地确定了每个神经元所使用的多感觉转换。因此,它们提供了一种比较神经元之间整合概况并评估它们如何受到内在或外在因素变化影响的方法。多感觉整合是大脑将来自多个感觉源(如视觉和听觉)的信息结合起来以最大化生物体识别和响应环境刺激能力的过程。人们对实现多感觉整合神经产物的实际转换过程了解甚少。通过关注神经元单感觉成分反应与其整合多感觉反应之间毫秒级的差异,发现这种多感觉转换可以用两个基本原则来描述:单感觉信息实时整合,多感觉反应由校准抑制塑造。现在仅凭借对神经元单感觉反应的了解,就可以利用这些原则准确预测其多感觉反应。

相似文献

1
Multisensory Integration Uses a Real-Time Unisensory-Multisensory Transform.
J Neurosci. 2017 May 17;37(20):5183-5194. doi: 10.1523/JNEUROSCI.2767-16.2017. Epub 2017 Apr 27.
2
Relative unisensory strength and timing predict their multisensory product.
J Neurosci. 2015 Apr 1;35(13):5213-20. doi: 10.1523/JNEUROSCI.4771-14.2015.
3
Representation and integration of multiple sensory inputs in primate superior colliculus.
J Neurophysiol. 1996 Aug;76(2):1246-66. doi: 10.1152/jn.1996.76.2.1246.
4
Cortex mediates multisensory but not unisensory integration in superior colliculus.
J Neurosci. 2007 Nov 21;27(47):12775-86. doi: 10.1523/JNEUROSCI.3524-07.2007.
5
Evaluating the operations underlying multisensory integration in the cat superior colliculus.
J Neurosci. 2005 Jul 13;25(28):6499-508. doi: 10.1523/JNEUROSCI.5095-04.2005.
6
Spatial determinants of multisensory integration in cat superior colliculus neurons.
J Neurophysiol. 1996 May;75(5):1843-57. doi: 10.1152/jn.1996.75.5.1843.
7
Neural mechanisms for synthesizing sensory information and producing adaptive behaviors.
Exp Brain Res. 1998 Nov;123(1-2):124-35. doi: 10.1007/s002210050553.
8
A neural network model of multisensory integration also accounts for unisensory integration in superior colliculus.
Brain Res. 2008 Nov 25;1242:13-23. doi: 10.1016/j.brainres.2008.03.074. Epub 2008 Apr 9.
9
Alterations to multisensory and unisensory integration by stimulus competition.
J Neurophysiol. 2011 Dec;106(6):3091-101. doi: 10.1152/jn.00509.2011. Epub 2011 Sep 28.
10
Cross-Modal Competition: The Default Computation for Multisensory Processing.
J Neurosci. 2019 Feb 20;39(8):1374-1385. doi: 10.1523/JNEUROSCI.1806-18.2018. Epub 2018 Dec 20.

引用本文的文献

1
Scikit-NeuroMSI: A Generalized Framework for Modeling Multisensory Integration.
Neuroinformatics. 2025 Jul 24;23(3):40. doi: 10.1007/s12021-025-09738-1.
2
Multimodality in the Collicular Pathway: Towards Compensatory Visual Processes.
Cells. 2025 Apr 25;14(9):635. doi: 10.3390/cells14090635.
3
The multisensory control of sequential actions.
Exp Brain Res. 2024 Dec 5;243(1):13. doi: 10.1007/s00221-024-06962-0.
4
The brain can develop conflicting multisensory principles to guide behavior.
Cereb Cortex. 2024 Jun 4;34(6). doi: 10.1093/cercor/bhae247.
5
Cross-modal exposure restores multisensory enhancement after hemianopia.
Cereb Cortex. 2023 Nov 4;33(22):11036-11046. doi: 10.1093/cercor/bhad343.
6
Predictability alters multisensory responses by modulating unisensory inputs.
Front Neurosci. 2023 Mar 29;17:1150168. doi: 10.3389/fnins.2023.1150168. eCollection 2023.
7
Neuroplasticity and Crossmodal Connectivity in the Normal, Healthy Brain.
Psychol Neurosci. 2021 Sep;14(3):298-334. doi: 10.1037/pne0000258. Epub 2021 Jul 29.
8
Morphology and Dendrite-Specific Synaptic Properties of Midbrain Neurons Shape Multimodal Integration.
J Neurosci. 2022 Mar 30;42(13):2614-2630. doi: 10.1523/JNEUROSCI.1695-21.2022. Epub 2022 Feb 8.
9
Association Cortex Is Essential to Reverse Hemianopia by Multisensory Training.
Cereb Cortex. 2021 Oct 1;31(11):5015-5023. doi: 10.1093/cercor/bhab138.

本文引用的文献

2
Relative unisensory strength and timing predict their multisensory product.
J Neurosci. 2015 Apr 1;35(13):5213-20. doi: 10.1523/JNEUROSCI.4771-14.2015.
3
What does a neuron learn from multisensory experience?
J Neurophysiol. 2015 Feb 1;113(3):883-9. doi: 10.1152/jn.00284.2014. Epub 2014 Nov 12.
4
Development of multisensory integration from the perspective of the individual neuron.
Nat Rev Neurosci. 2014 Aug;15(8):520-35. doi: 10.1038/nrn3742.
5
Brief cortical deactivation early in life has long-lasting effects on multisensory behavior.
J Neurosci. 2014 May 21;34(21):7198-202. doi: 10.1523/JNEUROSCI.3782-13.2014.
6
Noise-rearing disrupts the maturation of multisensory integration.
Eur J Neurosci. 2014 Feb;39(4):602-13. doi: 10.1111/ejn.12423. Epub 2013 Nov 19.
7
9
Development of cortical influences on superior colliculus multisensory neurons: effects of dark-rearing.
Eur J Neurosci. 2013 May;37(10):1594-601. doi: 10.1111/ejn.12182. Epub 2013 Mar 27.
10
Hebbian mechanisms help explain development of multisensory integration in the superior colliculus: a neural network model.
Biol Cybern. 2012 Dec;106(11-12):691-713. doi: 10.1007/s00422-012-0511-9. Epub 2012 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验