Zhang Chun Xiu, Zhang Yu, Wang Xin, Tang Zu Ming, Lu Zu Hong
National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, China.
Anal Biochem. 2003 Sep 1;320(1):136-40. doi: 10.1016/s0003-2697(03)00353-1.
The nonlinear optical properties of protein-modified gold nanoparticles has been studied by the hyper-Rayleigh scattering (HRS) technique. HRS signals from the nanoparticles coated with goat-anti-human IgG have been obtained when pumped with a laser pulse with a wavelength of 1064 nm. The HRS signals of gold nanoparticles with IgG were larger than those of bare gold nanoparticles. This can be explained by a noncentrosymmetric effect. It was also found that the HRS signals from the IgG-coated gold nanoparticles could be greatly increased when the antigen was added due to gold nanoparticle aggregation. Our experiment found that the HRS method could produce a measurable signal with 10 microg/ml antigen added, while the colorimetric method using UV spectrum detection required 100 microg/ml of added antigen. The results show that the HRS measurement of immunogold nanoparticles could become a potential immunoassay in determining small levels of antigen in aqueous samples.