Suppr超能文献

共聚焦和明场图像中神经元的自动三维追踪

Automated three-dimensional tracing of neurons in confocal and brightfield images.

作者信息

He Wenyun, Hamilton Thomas A, Cohen Andrew R, Holmes Timothy J, Pace Christopher, Szarowski Donald H, Turner James N, Roysam Badrinath

机构信息

Electrical Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.

出版信息

Microsc Microanal. 2003 Aug;9(4):296-310. doi: 10.1017/S143192760303040X.

Abstract

Automated three-dimensional (3-D) image analysis methods are presented for tracing of dye-injected neurons imaged by fluorescence confocal microscopy and HRP-stained neurons imaged by transmitted-light brightfield microscopy. An improved algorithm for adaptive 3-D skeletonization of noisy images enables the tracing. This algorithm operates by performing connectivity testing over large N x N x N voxel neighborhoods exploiting the sparseness of the structures of interest, robust surface detection that improves upon classical vacant neighbor schemes, improved handling of process ends or tips based on shape collapse prevention, and thickness-adaptive thinning. The confocal image stacks were skeletonized directly. The brightfield stacks required 3-D deconvolution. The results of skeletonization were analyzed to extract a graph representation. Topological and metric analyses can be carried out using this representation. A semiautomatic method was developed for reconnection of dendritic fragments that are disconnected due to insufficient dye penetration, an imaging deficiency, or skeletonization errors.

摘要

本文介绍了用于追踪通过荧光共聚焦显微镜成像的染料注入神经元以及通过透射光明场显微镜成像的辣根过氧化物酶(HRP)染色神经元的自动三维(3-D)图像分析方法。一种用于对噪声图像进行自适应3-D骨架化的改进算法实现了这种追踪。该算法通过在大的N×N×N体素邻域上进行连通性测试来运行,利用感兴趣结构的稀疏性、改进经典空邻域方案的稳健表面检测、基于防止形状塌陷改进对过程末端或尖端的处理以及厚度自适应细化。共聚焦图像堆栈直接进行骨架化。明场堆栈需要进行3-D去卷积。对骨架化结果进行分析以提取图形表示。使用这种表示可以进行拓扑和度量分析。开发了一种半自动方法,用于重新连接由于染料渗透不足、成像缺陷或骨架化错误而断开的树突片段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验