Suppr超能文献

从3D超声图像中进行前列腺边界分割。

Prostate boundary segmentation from 3D ultrasound images.

作者信息

Hu Ning, Downey Dónal B, Fenster Aaron, Ladak Hanif M

机构信息

Imaging Research Laboratories, The John P. Robarts Research Institute, London, Ontario N6H 5C1, Canada.

出版信息

Med Phys. 2003 Jul;30(7):1648-59. doi: 10.1118/1.1586267.

Abstract

Segmenting, or outlining the prostate boundary is an important task in the management of patients with prostate cancer. In this paper, an algorithm is described for semiautomatic segmentation of the prostate from 3D ultrasound images. The algorithm uses model-based initialization and mesh refinement using an efficient deformable model. Initialization requires the user to select only six points from which the outline of the prostate is estimated using shape information. The estimated outline is then automatically deformed to better fit the prostate boundary. An editing tool allows the user to edit the boundary in problematic regions and then deform the model again to improve the final results. The algorithm requires less than 1 min on a Pentium III 400 MHz PC. The accuracy of the algorithm was assessed by comparing the algorithm results, obtained from both local and global analysis, to the manual segmentations on six prostates. The local difference was mapped on the surface of the algorithm boundary to produce a visual representation. Global error analysis showed that the average difference between manual and algorithm boundaries was -0.20 +/- 0.28 mm, the average absolute difference was 1.19 +/- 0.14 mm, the average maximum difference was 7.01 +/- 1.04 mm, and the average volume difference was 7.16% +/- 3.45%. Variability in manual and algorithm segmentation was also assessed: Visual representations of local variability were generated by mapping variability on the segmentation mesh. The mean variability in manual segmentation was 0.98 mm and in algorithm segmentation was 0.63 mm and the differences of about 51.5% of the points comprising the average algorithm boundary are insignificant (P < or = 0.01) to the manual average boundary.

摘要

分割或勾勒前列腺边界是前列腺癌患者管理中的一项重要任务。本文描述了一种从三维超声图像中半自动分割前列腺的算法。该算法使用基于模型的初始化和基于有效可变形模型的网格细化。初始化仅要求用户选择六个点,然后利用形状信息估计前列腺轮廓。然后,估计出的轮廓会自动变形以更好地贴合前列腺边界。一个编辑工具允许用户在有问题的区域编辑边界,然后再次使模型变形以改善最终结果。在奔腾III 400 MHz的个人电脑上,该算法运行时间不到1分钟。通过将从局部和全局分析中获得的算法结果与六个前列腺的手动分割结果进行比较,评估了该算法的准确性。局部差异被映射到算法边界表面以生成可视化表示。全局误差分析表明,手动分割边界与算法分割边界之间的平均差异为-0.20±0.28毫米,平均绝对差异为1.19±0.14毫米,平均最大差异为7.01±1.04毫米,平均体积差异为7.16%±3.45%。还评估了手动分割和算法分割的变异性:通过将变异性映射到分割网格上生成局部变异性的可视化表示。手动分割的平均变异性为0.98毫米,算法分割的平均变异性为0.63毫米,构成算法平均边界的约51.5%的点与手动平均边界的差异不显著(P≤0.01)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验