Suppr超能文献

结合低层次、高层次和经验领域知识用于超声乳腺病变的自动分割

Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions.

作者信息

Madabhushi Anant, Metaxas Dimitris N

机构信息

Department of Bioengineering, University of Pennsylvania, 120 Hayden Hall, Philadelphia, PA 19104, USA.

出版信息

IEEE Trans Med Imaging. 2003 Feb;22(2):155-69. doi: 10.1109/TMI.2002.808364.

Abstract

Breast cancer is the most frequently diagnosed malignancy and the second leading cause of mortality in women. In the last decade, ultrasound along with digital mammography has come to be regarded as the gold standard for breast cancer diagnosis. Automatically detecting tumors and extracting lesion boundaries in ultrasound images is difficult due to their specular nature and the variance in shape and appearance of sonographic lesions. Past work on automated ultrasonic breast lesion segmentation has not addressed important issues such as shadowing artifacts or dealing with similar tumor like structures in the sonogram. Algorithms that claim to automatically classify ultrasonic breast lesions, rely on manual delineation of the tumor boundaries. In this paper, we present a novel technique to automatically find lesion margins in ultrasound images, by combining intensity and texture with empirical domain specific knowledge along with directional gradient and a deformable shape-based model. The images are first filtered to remove speckle noise and then contrast enhanced to emphasize the tumor regions. For the first time, a mathematical formulation of the empirical rules used by radiologists in detecting ultrasonic breast lesions, popularly known as the "Stavros Criteria" is presented in this paper. We have applied this formulation to automatically determine a seed point within the image. Probabilistic classification of image pixels based on intensity and texture is followed by region growing using the automatically determined seed point to obtain an initial segmentation of the lesion. Boundary points are found on the directional gradient of the image. Outliers are removed by a process of recursive refinement. These boundary points are then supplied as an initial estimate to a deformable model. Incorporating empirical domain specific knowledge along with low and high-level knowledge makes it possible to avoid shadowing artifacts and lowers the chance of confusing similar tumor like structures for the lesion. The system was validated on a database of breast sonograms for 42 patients. The average mean boundary error between manual and automated segmentation was 6.6 pixels and the normalized true positive area overlap was 75.1%. The algorithm was found to be robust to 1) variations in system parameters, 2) number of training samples used, and 3) the position of the seed point within the tumor. Running time for segmenting a single sonogram was 18 s on a 1.8-GHz Pentium machine.

摘要

乳腺癌是女性中最常被诊断出的恶性肿瘤,也是导致女性死亡的第二大原因。在过去十年中,超声检查与数字乳腺摄影已被视为乳腺癌诊断的金标准。由于超声图像具有镜面反射特性以及超声病变的形状和外观存在差异,自动检测肿瘤并提取超声图像中的病变边界具有一定难度。过去关于自动超声乳腺病变分割的工作尚未解决诸如阴影伪像或处理超声图像中类似肿瘤结构等重要问题。声称能够自动对超声乳腺病变进行分类的算法,依赖于手动描绘肿瘤边界。在本文中,我们提出了一种新颖的技术,通过将强度和纹理与特定领域的经验知识、方向梯度以及基于可变形形状的模型相结合,自动在超声图像中找到病变边缘。首先对图像进行滤波以去除斑点噪声,然后增强对比度以突出肿瘤区域。本文首次提出了放射科医生在检测超声乳腺病变时所使用的经验规则(即广为人知的“斯塔夫罗斯标准”)的数学公式。我们应用此公式自动在图像中确定一个种子点。基于强度和纹理对图像像素进行概率分类,随后使用自动确定的种子点进行区域生长,以获得病变的初始分割。在图像的方向梯度上找到边界点。通过递归细化过程去除异常值。然后将这些边界点作为初始估计提供给可变形模型。结合特定领域的经验知识以及低级和高级知识,能够避免阴影伪像,并降低将类似肿瘤结构误判为病变的可能性。该系统在42名患者的乳腺超声图像数据库上进行了验证。手动分割与自动分割之间的平均边界误差为6.6像素,归一化真阳性面积重叠率为75.1%。该算法被证明对以下方面具有鲁棒性:1)系统参数的变化;2)所使用的训练样本数量;3)种子点在肿瘤内的位置。在一台1.8 GHz奔腾机器上分割单个超声图像的运行时间为18秒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验