Suppr超能文献

使用子区域霍特林观察者的乳腺钼靶摄影中肿块的计算机辅助检测。

Computer aided detection of masses in mammography using subregion Hotelling observers.

作者信息

Baydush Alan H, Catarious David M, Abbey Craig K, Floyd Carey E

机构信息

Department of Radiation Oncology, Physics Division, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

Med Phys. 2003 Jul;30(7):1781-7. doi: 10.1118/1.1582011.

Abstract

We propose to investigate the use of the subregion Hotelling observer for the basis of a computer aided detection scheme for masses in mammography. A database of 1320 regions of interest (ROIs) was selected from the DDSM database collected by the University of South Florida using the Lumisys scanner cases. The breakdown of the cases was as follows: 656 normal ROIs, 307 benign ROIs, and 357 cancer ROIs. Each ROI was extracted at a size of 1024 x 1024 pixels and sub-sampled to 128 x 128 pixels. For the detection task, cancer and benign cases were considered positive and normal was considered negative. All positive cases had the lesion centered in the ROI. We chose to investigate the subregion Hotelling observer as a classifier to detect masses. The Hotelling observer incorporates information about the signal, the background, and the noise correlation for prediction of positive and negative and is the optimal detector when these are known. For our study, 225 subregion Hotelling observers were set up in a 15 x 15 grid across the center of the ROIs. Each separate observer was designed to "observe," or discriminate, an 8 x 8 pixel area of the image. A leave one out training and testing methodology was used to generate 225 "features," where each feature is the output of the individual observers. The 225 features derived from separate Hotelling observers were then narrowed down by using forward searching linear discriminants (LDs). The reduced set of features was then analyzed using an additional LD with receiver operating characteristic (ROC) analysis. The 225 Hotelling observer features were searched by the forward searching LD, which selected a subset of 37 features. This subset of 37 features was then analyzed using an additional LD, which gave a ROC area under the curve of 0.9412 +/- 0.006 and a partial area of 0.6728. Additionally, at 98% sensitivity the overall classifier had a specificity of 55.9% and a positive predictive value of 69.3%. Preliminary results suggest that using subregion Hotelling observers in combination with LDs can provide a strong backbone for a CAD scheme to help radiologists with detection. Such a system could be used in conjunction with CAD systems for false positive reduction.

摘要

我们建议研究将子区域霍特林观察者用于乳腺钼靶摄影中肿块的计算机辅助检测方案的基础。从南佛罗里达大学使用Lumisys扫描仪病例收集的数字数据库乳腺X线摄影(DDSM)数据库中选择了1320个感兴趣区域(ROI)的数据库。病例分类如下:656个正常ROI,307个良性ROI和357个癌症ROI。每个ROI以1024×1024像素的大小提取并下采样到128×128像素。对于检测任务,癌症和良性病例被视为阳性,正常病例被视为阴性。所有阳性病例的病变都位于ROI的中心。我们选择研究子区域霍特林观察者作为检测肿块的分类器。霍特林观察者结合了有关信号、背景和噪声相关性的信息来预测阳性和阴性,并且在这些信息已知时是最佳检测器。对于我们的研究,在ROI中心的15×15网格中设置了225个子区域霍特林观察者。每个单独的观察者被设计用于“观察”或区分图像的一个8×8像素区域。采用留一法训练和测试方法来生成225个“特征”,其中每个特征是各个观察者的输出。然后,通过使用前向搜索线性判别式(LD)来缩小从单独的霍特林观察者派生的225个特征的范围。然后使用带有接收器操作特征(ROC)分析的附加LD对减少后的特征集进行分析。通过前向搜索LD搜索225个霍特林观察者特征,该搜索选择了37个特征的子集。然后使用附加LD对这个37个特征的子集进行分析,其曲线下的ROC面积为0.9412±0.006,部分面积为0.6728。此外,在98%的灵敏度下,整体分类器的特异性为55.9%,阳性预测值为69.3%。初步结果表明,将子区域霍特林观察者与LD结合使用可为计算机辅助检测(CAD)方案提供强大的基础,以帮助放射科医生进行检测。这样的系统可与CAD系统结合使用以减少假阳性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验