Suppr超能文献

基于任务的肝脏T1加权磁共振成像中纤维化检测翻转角优化

Task-based optimization of flip angle for fibrosis detection in T1-weighted MRI of liver.

作者信息

Brand Jonathan F, Furenlid Lars R, Altbach Maria I, Galons Jean-Philippe, Bhattacharyya Achyut, Sharma Puneet, Bhattacharyya Tulshi, Bilgin Ali, Martin Diego R

机构信息

University of Arizona , College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85719, United States.

University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85719, United States; University of Arizona, College of Medicine, Department of Medical Imaging, P.O. Box 245067 Tucson, Arizona 85724-5067, United States.

出版信息

J Med Imaging (Bellingham). 2016 Jul;3(3):035502. doi: 10.1117/1.JMI.3.3.035502. Epub 2016 Jul 21.

Abstract

Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. The current reference standard for diagnosing HF is biopsy followed by pathologist examination; however, this is limited by sampling error and carries a risk of complications. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically in the order of 1 to 5 mm, which approximates the resolution limit of in vivo gadolinium-enhanced magnetic resonance imaging in the delayed phase. We use MRI of formalin-fixed human ex vivo liver samples as phantoms that mimic the textural contrast of in vivo Gd-MRI. We have developed a local texture analysis that is applied to phantom images, and the results are used to train model observers to detect HF. The performance of the observer is assessed with the area-under-the-receiver-operator-characteristic curve (AUROC) as the figure-of-merit. To optimize the MRI pulse sequence, phantoms were scanned with multiple times at a range of flip angles. The flip angle that was associated with the highest AUROC was chosen as optimal for the task of detecting HF.

摘要

慢性肝病是一个全球性的健康问题,肝纤维化(HF)是该疾病的标志之一。目前诊断HF的参考标准是活检后由病理学家进行检查;然而,这受到抽样误差的限制,并存在并发症风险。HF的病理诊断基于肝脏作为在门三联管内形成的小叶胶原网络的质地变化。胶原小叶的大小通常在1至5毫米的范围内,这接近体内钆增强磁共振成像在延迟期的分辨率极限。我们使用福尔马林固定的人体离体肝脏样本的MRI作为模拟体内钆增强MRI纹理对比的体模。我们开发了一种应用于体模图像的局部纹理分析方法,并将结果用于训练模型观察者以检测HF。观察者的表现以受试者工作特征曲线下面积(AUROC)作为评价指标进行评估。为了优化MRI脉冲序列,在一系列翻转角度下对体模进行多次扫描。与最高AUROC相关的翻转角度被选为检测HF任务的最佳角度。

相似文献

2
Texture-based classification of liver fibrosis using MRI.基于纹理的肝脏纤维化磁共振成像分类
J Magn Reson Imaging. 2015 Feb;41(2):322-8. doi: 10.1002/jmri.24536. Epub 2013 Dec 18.

本文引用的文献

2
Current efforts and trends in the treatment of NASH.目前治疗 NASH 的方法和趋势。
J Hepatol. 2015 Apr;62(1 Suppl):S65-75. doi: 10.1016/j.jhep.2015.02.041.
6
Pharmacological agents for NASH.治疗 NASH 的药物。
Nat Rev Gastroenterol Hepatol. 2013 Nov;10(11):676-85. doi: 10.1038/nrgastro.2013.193. Epub 2013 Oct 15.
10
New treatments for chronic hepatitis C.慢性丙型肝炎的新疗法。
Korean J Hepatol. 2010 Sep;16(3):263-77. doi: 10.3350/kjhep.2010.16.3.263.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验