Suppr超能文献

扩散率受限的q空间轨迹成像

Diffusivity-limited q-space trajectory imaging.

作者信息

Boito Deneb, Herberthson Magnus, Dela Haije Tom, Blystad Ida, Özarslan Evren

机构信息

Department of Biomedical Engineering, Campus US, Linköping University, Linköping, SE-581 83, Sweden.

Center for Medical Image Science and Visualization, Linköping University, Linköping, SE-581 83, Sweden.

出版信息

Magn Reson Lett. 2023 Jan 6;3(2):187-196. doi: 10.1016/j.mrl.2022.12.003. eCollection 2023 May.

Abstract

Q-space trajectory imaging (QTI) allows non-invasive estimation of microstructural features of heterogeneous porous media via diffusion magnetic resonance imaging performed with generalised gradient waveforms. A recently proposed constrained estimation framework, called QTI+, improved QTI's resilience to noise and data sparsity, thus increasing the reliability of the method by enforcing relevant positivity constraints. In this work we consider expanding the set of constraints to be applied during the fitting of the QTI model. We show that the additional conditions, which introduce an upper bound on the diffusivity values, further improve the retrieved parameters on a publicly available human brain dataset as well as on data acquired from healthy volunteers using a scanner-ready protocol.

摘要

Q空间轨迹成像(QTI)通过使用广义梯度波形进行扩散磁共振成像,能够对非均质多孔介质的微观结构特征进行无创估计。最近提出的一种名为QTI+的约束估计框架,提高了QTI对噪声和数据稀疏性的恢复能力,从而通过实施相关的正性约束提高了该方法的可靠性。在这项工作中,我们考虑在QTI模型拟合过程中扩展要应用的约束集。我们表明,引入扩散率值上限的附加条件,在公开可用的人类脑数据集以及使用扫描仪就绪协议从健康志愿者获取的数据上,进一步改善了检索到的参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dac2/12406586/ced23fe523a1/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验