Sanchez S Deniz A, Guevara G Rubén D, Calderón V Sergio A
Facultad de Ciencias, Departamento de Estadística, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia.
J Appl Stat. 2023 Nov 15;51(12):2279-2297. doi: 10.1080/02664763.2023.2279012. eCollection 2024.
The present work intends to compare two statistical classification methods using images as covariates and under the comparison criterion of the ROC curve. The first implemented procedure is based on exploring a mathematical-statistical model using multidimensional arrangements, frequently known as tensors. It is based on the theoretical framework of the high-dimensional generalized linear model. The second methodology is situated in the field of functional data analysis, particularly in the space of functions that have a finite measure of the total variation. A simulation study is carried out to compare both classification methodologies using the area under the ROC curve (AUC). The model based on functional data had better performance than the tensor model. A real data application using medical images is presented.
本研究旨在比较两种以图像作为协变量且基于ROC曲线比较标准的统计分类方法。第一个实施程序是基于探索一种使用多维排列(通常称为张量)的数理统计模型。它基于高维广义线性模型的理论框架。第二种方法位于功能数据分析领域,特别是在具有有限全变差测度的函数空间中。进行了一项模拟研究,以使用ROC曲线下面积(AUC)比较这两种分类方法。基于功能数据的模型比张量模型具有更好的性能。还给出了一个使用医学图像的实际数据应用。