Hemish Jill, Nakaya Naoki, Mittal Vivek, Enikolopov Grigori
Cold Spring Harbor Laboratory, 1 Bungtown Road, PO Box 100, Cold Spring Harbor, NY 11724, USA.
J Biol Chem. 2003 Oct 24;278(43):42321-9. doi: 10.1074/jbc.M308192200. Epub 2003 Aug 7.
Nitric oxide signaling is crucial for effecting long lasting changes in cells, including gene expression, cell cycle arrest, apoptosis, and differentiation. We have determined the temporal order of gene activation induced by NO in mammalian cells and have examined the signaling pathways that mediate the action of NO. Using microarrays to study the kinetics of gene activation by NO, we have determined that NO induces three distinct waves of gene activity. The first wave is induced within 30 min of exposure to NO and represents the primary gene targets of NO. It is followed by subsequent waves of gene activity that may reflect further cascades of NO-induced gene expression. We verified our results using quantitative real time PCR and further validated our conclusions about the effects of NO by using cytokines to induce endogenous NO production. We next applied pharmacological and genetic approaches to determine the signaling pathways that are used by NO to regulate gene expression. We used inhibitors of particular signaling pathways, as well as cells from animals with a deleted p53 gene, to define groups of genes that require phosphatidylinositol 3-kinase, protein kinase C, NF-kappaB, p53, or combinations thereof for activation by NO. Our results demonstrate that NO utilizes several independent signaling pathways to induce gene expression.
一氧化氮信号传导对于在细胞中实现持久变化至关重要,这些变化包括基因表达、细胞周期停滞、细胞凋亡和分化。我们已经确定了哺乳动物细胞中由一氧化氮诱导的基因激活的时间顺序,并研究了介导一氧化氮作用的信号通路。利用微阵列研究一氧化氮诱导基因激活的动力学,我们确定一氧化氮诱导了三个不同的基因活性波。第一波在暴露于一氧化氮后30分钟内诱导产生,代表一氧化氮的主要基因靶点。随后是基因活性的后续波,这可能反映了一氧化氮诱导基因表达的进一步级联反应。我们使用定量实时PCR验证了我们的结果,并通过使用细胞因子诱导内源性一氧化氮产生进一步验证了我们关于一氧化氮作用的结论。接下来,我们应用药理学和遗传学方法来确定一氧化氮用于调节基因表达的信号通路。我们使用特定信号通路的抑制剂,以及来自p53基因缺失动物的细胞,来定义需要磷脂酰肌醇3激酶、蛋白激酶C、核因子κB、p53或其组合才能被一氧化氮激活的基因组。我们的结果表明,一氧化氮利用多种独立的信号通路来诱导基因表达。