Suppr超能文献

颠覆性纳米电子学发展中的基本器件设计考量

Fundamental device design considerations in the development of disruptive nanoelectronics.

作者信息

Singh R, Poole J O, Poole K F, Vaidya S D

机构信息

Center for Silicon Nanoelectronics, Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634-0915, USA.

出版信息

J Nanosci Nanotechnol. 2002 Jun-Aug;2(3-4):363-8. doi: 10.1166/jnn.2002.117.

Abstract

In the last quarter of a century silicon-based integrated circuits (ICs) have played a major role in the growth of the economy throughout the world. A number of new technologies, such as quantum computing, molecular computing, DNA molecules for computing, etc., are currently being explored to create a product to replace semiconductor transistor technology. We have examined all of the currently explored options and found that none of these options are suitable as silicon IC's replacements. In this paper we provide fundamental device criteria that must be satisfied for the successful operation of a manufacturable, not yet invented, device. The two fundamental limits are the removal of heat and reliability. The switching speed of any practical man-made computing device will be in the range of 10(-15) to 10(-3) s. Heisenberg's uncertainty principle and the computer architecture set the heat generation limit. The thermal conductivity of the materials used in the fabrication of a nanodimensional device sets the heat removal limit. In current electronic products, redundancy plays a significant part in improving the reliability of parts with macroscopic defects. In the future, microscopic and even nanoscopic defects will play a critical role in the reliability of disruptive nanoelectronics. The lattice vibrations will set the intrinsic reliability of future computing systems. The two critical limits discussed in this paper provide criteria for the selection of materials used in the fabrication of future devices. Our work shows that diamond contains the clue to providing computing devices that will surpass the performance of silicon-based nanoelectronics.

摘要

在过去的四分之一个世纪里,硅基集成电路(IC)在全球经济增长中发挥了重要作用。目前正在探索一些新技术,如量子计算、分子计算、用于计算的DNA分子等,以创造一种产品来取代半导体晶体管技术。我们研究了所有目前探索的选项,发现这些选项都不适合作为硅集成电路的替代品。在本文中,我们提供了对于一种可制造但尚未发明的器件成功运行必须满足的基本器件标准。两个基本限制是散热和可靠性。任何实际的人造计算设备的开关速度将在10^(-15)到10^(-3)秒的范围内。海森堡不确定性原理和计算机架构设定了发热极限。用于制造纳米尺寸器件的材料的热导率设定了散热极限。在当前的电子产品中,冗余在提高具有宏观缺陷的部件的可靠性方面起着重要作用。在未来,微观甚至纳米级缺陷将在颠覆性纳米电子学的可靠性中发挥关键作用。晶格振动将决定未来计算系统的固有可靠性。本文讨论的两个关键限制为选择用于制造未来器件的材料提供了标准。我们的工作表明,钻石包含了提供超越硅基纳米电子学性能的计算设备的线索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验