Castle Thomas C, Maurer Richard I, Sowrey Frank E, Went Michael J, Reynolds Christopher A, McInnes Eric J L, Blower Philip J
School of Physical Sciences, University of Kent, Canterbury CT2 7NR, United Kingdom.
J Am Chem Soc. 2003 Aug 20;125(33):10040-9. doi: 10.1021/ja035737d.
The first copper bis(selenosemicarbazone) complexes have been synthesized, using the ligands glyoxal bis(selenosemicarbazone), pyruvaldehyde bis(selenosemicarbazone), and 2,3-butanedione bis(selenosemicarbazone). Their spectroscopic properties indicate that they are structurally analogous to their well-known square-planar sulfur-containing counterparts, the copper bis(thiosemicarbazone) complexes. Spectroscopic comparison of the sulfur- and selenium-containing complexes provides insight into their electronic structure. The effects on spectroscopic and redox properties of replacing sulfur with selenium, and of successive addition of methyl groups to the ligand backbone, are rationalized in terms of their electronic structure using spin-unrestricted density functional calculations. These suggest that, like the sulfur analogues, the complexes have a very low-lying empty ligand-based pi-orbital immediately above the LUMO, while the LUMO itself has d(x2)-(y2) character (i.e., is the spin partner of the HOMO). Replacement of S by Se shifts the oxidation potentials much more than the reduction potentials, whereas alkylation of the ligand backbone shifts the reduction potentials more than the oxidation potentials. This suggests that oxidation and reduction involve spatially different orbitals, with the additional electron in the reduced species occupying the ligand-based pi-orbital rather than d(x2)-(y2). Density functional calculations on the putative singlet Cu(I)-reduced species suggest that this ligand pi-character could be brought about by distortion away from planarity during reduction, allowing the low-lying ligand pi-LUMO to mix into the d(x2)-(y2)-based HOMO. The analogy in the structure and reduction behavior between the sulfur- and selenium-containing complexes suggests that labeled with positron emitting isotopes of copper (Cu-60, Cu-62, Cu-64), the complexes warrant biological evaluation as radiopharmaceuticals for imaging of tissue perfusion and hypoxia.
利用乙二醛双(硒代氨基脲)、丙酮醛双(硒代氨基脲)和2,3 - 丁二酮双(硒代氨基脲)配体,合成了首批双(硒代氨基脲)铜配合物。它们的光谱性质表明,其结构类似于其广为人知的平面正方形含硫对应物——双(硫代氨基脲)铜配合物。含硫和含硒配合物的光谱比较有助于深入了解它们的电子结构。通过自旋非限制密度泛函计算,从电子结构角度对用硒取代硫以及在配体主链上连续添加甲基对光谱和氧化还原性质的影响进行了合理化解释。结果表明,与含硫类似物一样,这些配合物在最低未占分子轨道(LUMO)上方紧邻处有一个非常低的空的基于配体的π轨道,而LUMO本身具有d(x² - y²)特征(即,是最高已占分子轨道(HOMO)的自旋配对轨道)。用硒取代硫对氧化电位的影响远大于对还原电位的影响,而配体主链的烷基化对还原电位的影响大于对氧化电位的影响。这表明氧化和还原涉及空间上不同的轨道,还原态物种中的额外电子占据基于配体的π轨道而非d(x² - y²)轨道。对假定的单重态Cu(I)还原物种的密度泛函计算表明,这种配体π特征可能是由于还原过程中偏离平面的畸变导致的,使得低能的配体π - LUMO混入基于d(x² - y²)的HOMO中。含硫和含硒配合物在结构和还原行为上的相似性表明,用发射正电子的铜同位素(Cu - 60、Cu - 62、Cu - 64)标记后,这些配合物作为用于组织灌注和缺氧成像的放射性药物值得进行生物学评估。