Suppr超能文献

The critical role of intracellular calcium in the mechanisms of plasticity of common snail defensive behavior command neurons LPl1 and RPl1 in nociceptive sensitization.

作者信息

Nikitin V P, Kozyrev S A

机构信息

P. K. Anokhin Science Research Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow.

出版信息

Neurosci Behav Physiol. 2003 Jun;33(5):513-9. doi: 10.1023/a:1023423519777.

Abstract

Studies on semi-intact common snail preparations addressed the involvement of intracellular calcium in changes in the excitability and responses to sensory stimuli of defensive behavior command neurons LPl1 and RPl1 during the acquisition of nociceptive sensitization. Application of sensitizing stimuli to the heads of control snails led to depolarization of neuron membranes, increases in neuron excitability, and depression of the responses of neurons to sensory stimuli during the short-term stage, and marked facilitation of responses in the long-term stage of sensitization. Acquisition of sensitization during profound hyperpolarization of neurons led to suppression of the increase in excitability, along with depression of responses to chemical stimulation of the head in the short- and long-term stages of sensitization. Neuron responses to tactile stimulation of the head and foot showed synaptic facilitation, similar to that seen in neurons of control animals. Acquisition of sensitization during intracellular injection of the calcium chelators EGTA and BAPTA led to suppression of synaptic facilitation in the responses of neurons to both chemical and tactile stimulation. In these conditions, membrane excitability increased to a greater extent than in neurons of control animals. The results of these experiments suggest that changes in responses to sensory stimulation in sensitized snails are associated with postsynaptic calcium-dependent mechanisms of plasticity in neurons LPl1 and RPl1.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验