Carrion-Vazquez Mariano, Li Hongbin, Lu Hui, Marszalek Piotr E, Oberhauser Andres F, Fernandez Julio M
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
Nat Struct Biol. 2003 Sep;10(9):738-43. doi: 10.1038/nsb965. Epub 2003 Aug 17.
Ubiquitin chains are formed through the action of a set of enzymes that covalently link ubiquitin either through peptide bonds or through isopeptide bonds between their C terminus and any of four lysine residues. These naturally occurring polyproteins allow one to study the mechanical stability of a protein, when force is applied through different linkages. Here we used single-molecule force spectroscopy techniques to examine the mechanical stability of N-C-linked and Lys48-C-linked ubiquitin chains. We combined these experiments with steered molecular dynamics (SMD) simulations and found that the mechanical stability and unfolding pathway of ubiquitin strongly depend on the linkage through which the mechanical force is applied to the protein. Hence, a protein that is otherwise very stable may be easily unfolded by a relatively weak mechanical force applied through the right linkage. This may be a widespread mechanism in biological systems.
泛素链是通过一组酶的作用形成的,这些酶通过肽键或其C末端与四个赖氨酸残基中任何一个之间的异肽键将泛素共价连接。这些天然存在的多聚蛋白使人们能够在通过不同连接施加力时研究蛋白质的机械稳定性。在这里,我们使用单分子力谱技术来研究N-C连接和Lys48-C连接的泛素链的机械稳定性。我们将这些实验与定向分子动力学(SMD)模拟相结合,发现泛素的机械稳定性和展开途径强烈依赖于将机械力施加到蛋白质上的连接方式。因此,一个原本非常稳定的蛋白质可能会通过通过正确连接施加的相对较弱的机械力而很容易地展开。这可能是生物系统中一种广泛存在的机制。