Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
PLoS Comput Biol. 2023 Dec 20;19(12):e1011726. doi: 10.1371/journal.pcbi.1011726. eCollection 2023 Dec.
Plasmodium falciparum (Pf) is responsible for the most lethal form of malaria. VAR2CSA is an adhesin protein expressed by this parasite at the membrane of infected erythrocytes for attachment to the placenta, leading to pregnancy-associated malaria. VAR2CSA is a large 355 kDa multidomain protein composed of nine extracellular domains, a transmembrane helix, and an intracellular domain. VAR2CSA binds to Chondroitin Sulphate A (CSA) of the proteoglycan matrix of the placenta. Shear flow, as the one occurring in blood, has been shown to enhance the (VAR2CSA-mediated) adhesion of Pf-infected erythrocytes on the CSA-matrix. However, the underlying molecular mechanism governing this enhancement has remained elusive. Here, we address this question by using equilibrium, force-probe, and docking-based molecular dynamics simulations. We subjected the VAR2CSA protein-CSA sugar complex to a force mimicking the tensile force exerted on this system due to the shear of the flowing blood. We show that upon this force exertion, VAR2CSA undergoes a large opening conformational transition before the CSA sugar chain dissociates from its main binding site. This preferential order of events is caused by the orientation of the molecule during elongation, as well as the strong electrostatic attraction of the sugar to the main protein binding site. Upon opening, two additional cryptic CSA binding sites get exposed and a functional dodecameric CSA molecule can be stably accommodated at these force-exposed positions. Thus, our results suggest that mechanical forces increase the avidity of VAR2CSA by turning it from a monovalent to a multivalent state. We propose this to be the molecular cause of the observed shear-enhanced adherence. Mechanical control of the valency of VAR2CSA is an intriguing hypothesis that can be tested experimentally and which is of relevance for the understanding of the malaria infection and for the development of anti placental-malaria vaccines targeting VAR2CSA.
恶性疟原虫(Pf)是引起最致命疟疾的病原体。VAR2CSA 是一种黏附蛋白,由感染的红细胞膜表达,可黏附于胎盘,导致妊娠相关性疟疾。VAR2CSA 是一种大型 355 kDa 多结构域蛋白,由九个细胞外结构域、一个跨膜螺旋和一个细胞内结构域组成。VAR2CSA 与胎盘蛋白聚糖基质中的硫酸软骨素 A(CSA)结合。已有研究表明,血流剪切力可增强 Pf 感染红细胞与 CSA 基质的(VAR2CSA 介导的)黏附。然而,控制这种增强的潜在分子机制仍不清楚。在这里,我们通过使用平衡、力探针和基于对接的分子动力学模拟来解决这个问题。我们对 VAR2CSA 蛋白-CSA 糖复合物施加了一种力,模拟由于血流剪切而施加在该系统上的拉伸力。我们发现,在施加这种力后,VAR2CSA 在 CSA 糖链从其主要结合位点解离之前经历了一个大的开口构象转变。这种优先的事件顺序是由分子在伸长过程中的取向以及糖与主要蛋白质结合位点的强静电吸引力引起的。打开后,两个额外的隐匿 CSA 结合位点暴露出来,一个功能性十二聚体 CSA 分子可以稳定地容纳在这些力暴露的位置。因此,我们的结果表明,机械力通过将 VAR2CSA 从单价状态转变为多价状态来增加其亲和力。我们提出,这种机械力的改变是观察到的剪切增强黏附的分子原因。VAR2CSA 结合价的机械控制是一个有趣的假设,可以通过实验进行测试,对于理解疟疾感染和开发针对 VAR2CSA 的抗胎盘疟疾疫苗具有重要意义。