Suppr超能文献

使用全局优化技术进行神经网络训练。

Neural network training with global optimization techniques.

作者信息

Yamazaki Akio, Ludermir Teresa B

机构信息

Center of Informatics, Federal University of Pernambuco, Cidade Universitária, P.O. Box 7851, Recife, Pernambuco, 50.732-970, Brazil.

出版信息

Int J Neural Syst. 2003 Apr;13(2):77-86. doi: 10.1142/S0129065703001467.

Abstract

This paper presents an approach of using Simulated Annealing and Tabu Search for the simultaneous optimization of neural network architectures and weights. The problem considered is the odor recognition in an artificial nose. Both methods have produced networks with high classification performance and low complexity. Generalization has been improved by using the backpropagation algorithm for fine tuning. The combination of simple and traditional search methods has shown to be very suitable for generating compact and efficient networks.

摘要

本文提出了一种使用模拟退火和禁忌搜索来同时优化神经网络架构和权重的方法。所考虑的问题是人工鼻中气味的识别。两种方法都生成了具有高分类性能和低复杂度的网络。通过使用反向传播算法进行微调提高了泛化能力。简单和传统搜索方法的结合已证明非常适合生成紧凑且高效的网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验