Song Yifan, Mao Junjun, Gunner M R
Physics Department J-419, City College of New York, 138th Street and Convent Avenue, New York, New York 10031, USA.
Biochemistry. 2003 Aug 26;42(33):9875-88. doi: 10.1021/bi034482d.
Residue ionization states were calculated in nine crystal structures of bacteriorhodopsin trapped in bR, early M, and late M states by multiconformation continuum electrostatics. This combines continuum electrostatics and molecular mechanics, deriving equilibrium distributions of ionization states and polar residue and water positions. The three central cluster groups [retinal Schiff base (SB), Asp 85 and Asp 212] are ionized in bR structures while a proton has transferred from SB(+) to Asp 85(-) in late M structures matching experimental results. The proton shift in M is due to weaker SB(+)-ionized acid and more favorable SB(0)-ionized acid interactions following retinal isomerization. The proton release cluster (Glu 194 and Glu 204) binds one proton in bR, which is lost to water by pH 8 in late M. In bR the half-ionized state is stabilized by charge-dipole interactions while full ionization is disallowed by charge-charge repulsion between the closely spaced acids. In M the acids move apart, permitting full ionization. Arg 82 movement connects the proton shifts in the central and proton release clusters. Changes in total charge of the two clusters are coupled by direct long-range interactions. Separate calculations consider continuum or explicit water in internal cavities. The explicit waters and nearby polar residues can reorient to stabilize different charge distributions. Proton release to the low-pH, extracellular side of the protein occurs in these calculations where residue ionization remains at equilibrium with the medium. Thus, the key changes distinguishing the intermediates are indeed trapped in the structures.
通过多构象连续介质静电学方法,计算了处于bR态、早期M态和晚期M态的细菌视紫红质的9种晶体结构中的残基电离状态。该方法结合了连续介质静电学和分子力学,得出电离状态以及极性残基和水分子位置的平衡分布。在bR结构中,三个中心簇基团[视黄醛席夫碱(SB)、天冬氨酸85和天冬氨酸212]发生电离,而在晚期M结构中,一个质子已从SB(+)转移至天冬氨酸85(-),这与实验结果相符。M态中的质子转移是由于视黄醛异构化后,SB(+)-电离酸的相互作用减弱,而SB(0)-电离酸的相互作用更有利。质子释放簇(谷氨酸194和谷氨酸204)在bR态结合一个质子,在晚期M态中,该质子在pH 8时释放到水中。在bR态中,半电离状态通过电荷-偶极相互作用得以稳定,而紧密排列的酸之间的电荷-电荷排斥则阻止了完全电离。在M态中,酸彼此分开,允许完全电离。精氨酸82的移动连接了中心簇和质子释放簇中的质子转移。两个簇总电荷的变化通过直接的长程相互作用耦合。单独的计算考虑了内部腔中的连续介质水或显式水。显式水和附近的极性残基可以重新定向,以稳定不同的电荷分布。在这些计算中,质子释放到蛋白质低pH值的细胞外侧,此时残基电离与介质保持平衡。因此,区分这些中间体的关键变化确实被困在了结构中。