Suppr超能文献

产生跨膜质子梯度的分子机制。

Molecular mechanisms for generating transmembrane proton gradients.

作者信息

Gunner M R, Amin Muhamed, Zhu Xuyu, Lu Jianxun

机构信息

Department of Physics, City College of New York, New York, NY 10031, USA.

出版信息

Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):892-913. doi: 10.1016/j.bbabio.2013.03.001. Epub 2013 Mar 16.

Abstract

Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.

摘要

膜蛋白利用光能或高能底物的能量,通过一系列反应建立跨膜质子梯度,这些反应导致质子释放到低pH区室(P侧),并从高pH区室(N侧)摄取质子。本综述探讨了在四种蛋白质中,底物、辅因子和氨基酸的质子亲和力是如何被修饰以驱动质子转移的。细菌反应中心(RCs)和光系统II(PSII)在膜的P侧与待氧化的物质进行氧化还原化学作用,而还原反应发生在膜的N侧。使用的末端氧化还原辅因子的pKa值强烈依赖于它们的氧化还原状态,因此质子在氧化时丢失,在还原时获得。细菌视紫红质是一种真正的质子泵。光激活触发结合视黄醛的反式到顺式异构化。视网膜运动引发的构象变化改变了氨基酸簇内的强静电相互作用,导致质子亲和力发生变化,驱动跨膜质子转移。细胞色素c氧化酶(CcO)催化O2还原为水。化学反应所需的质子从N侧结合。还原化学反应也驱动质子从N侧向P侧泵出。总体而言,在CcO中,摄取4个电子以还原O2会使8个电荷跨膜运输,每次还原都与从N侧去除两个质子、为化学反应提供一个质子以及将另一个质子运输到P侧完全耦合。

相似文献

1
Molecular mechanisms for generating transmembrane proton gradients.
Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):892-913. doi: 10.1016/j.bbabio.2013.03.001. Epub 2013 Mar 16.
2
Characterizing the proton loading site in cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12414-9. doi: 10.1073/pnas.1407187111. Epub 2014 Aug 11.
4
Proton exit channels in bovine cytochrome c oxidase.
J Phys Chem B. 2005 Feb 10;109(5):1999-2006. doi: 10.1021/jp0464371.
5
Two conformational states of Glu242 and pKas in bovine cytochrome c oxidase.
Photochem Photobiol Sci. 2006 Jun;5(6):611-20. doi: 10.1039/b600096g. Epub 2006 Apr 20.
7
Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase.
Nature. 2006 Apr 6;440(7085):829-32. doi: 10.1038/nature04619.
10
Respiratory conservation of energy with dioxygen: cytochrome C oxidase.
Met Ions Life Sci. 2015;15:89-130. doi: 10.1007/978-3-319-12415-5_4.

引用本文的文献

1
Redox-Activated Proton Transfer through a Redundant Network in the Q Site of Cytochrome .
J Chem Inf Model. 2025 Mar 10;65(5):2660-2669. doi: 10.1021/acs.jcim.4c02361. Epub 2025 Feb 26.
2
Proton transfer reactions: From photochemistry to biochemistry and bioenergetics.
BBA Adv. 2023 Mar 9;3:100085. doi: 10.1016/j.bbadva.2023.100085. eCollection 2023.
3
Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines.
Annu Rev Biophys. 2023 May 9;52:525-551. doi: 10.1146/annurev-biophys-111622-091140. Epub 2023 Feb 15.
5
Characterizing Protein Protonation Microstates Using Monte Carlo Sampling.
J Phys Chem B. 2022 Apr 7;126(13):2476-2485. doi: 10.1021/acs.jpcb.2c00139. Epub 2022 Mar 28.
6
O to bR transition in bacteriorhodopsin occurs through a proton hole mechanism.
Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2024803118.
7
Activating the Cpx response induces tolerance to antisense PNA delivered by an arginine-rich peptide in .
Mol Ther Nucleic Acids. 2021 Jun 24;25:444-454. doi: 10.1016/j.omtn.2021.06.009. eCollection 2021 Sep 3.
8
Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient.
Front Chem. 2021 Jun 15;9:660954. doi: 10.3389/fchem.2021.660954. eCollection 2021.
9
Cavity hydration dynamics in cytochrome oxidase and functional implications.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8830-E8836. doi: 10.1073/pnas.1707922114. Epub 2017 Oct 2.
10
Structural Changes and Proton Transfer in Cytochrome c Oxidase.
Sci Rep. 2015 Aug 27;5:12047. doi: 10.1038/srep12047.

本文引用的文献

1
QM/MM Models of the O2-Evolving Complex of Photosystem II.
J Chem Theory Comput. 2006 Jul;2(4):1119-34. doi: 10.1021/ct060018l.
2
The effect of protonation on [Mn(IV)(μ2-O)] 2 complexes.
Photosynth Res. 1993 Jan;38(3):303-8. doi: 10.1007/BF00046754.
3
Affinity and activity of non-native quinones at the Q(B) site of bacterial photosynthetic reaction centers.
Photosynth Res. 2014 May;120(1-2):181-96. doi: 10.1007/s11120-013-9850-1. Epub 2013 May 29.
4
Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release.
Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1003-19. doi: 10.1016/j.bbabio.2012.10.006. Epub 2012 Oct 24.
5
Modeling near-edge fine structure X-ray spectra of the manganese catalytic site for water oxidation in photosystem II.
J Am Chem Soc. 2012 Oct 17;134(41):17157-67. doi: 10.1021/ja306794p. Epub 2012 Oct 3.
6
Competition among Ca2+, Mg2+, and Na+ for model ion channel selectivity filters: determinants of ion selectivity.
J Phys Chem B. 2012 Sep 6;116(35):10703-14. doi: 10.1021/jp304925a. Epub 2012 Aug 23.
8
High-resolution protein structure determination by serial femtosecond crystallography.
Science. 2012 Jul 20;337(6092):362-4. doi: 10.1126/science.1217737. Epub 2012 May 31.
9
The alkenyl migration mechanism catalyzed by extradiol dioxygenases: a hybrid DFT study.
J Biol Inorg Chem. 2012 Aug;17(6):881-90. doi: 10.1007/s00775-012-0904-1. Epub 2012 May 24.
10
Why nature chose Mn for the water oxidase in Photosystem II.
Dalton Trans. 2012 Jun 28;41(24):7179-89. doi: 10.1039/c2dt30185g. Epub 2012 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验