Martí Sergio, Moliner Vincent, Tuñón Iñaki, Williams Ian H
Departament de Ciències Experimentals, Universitat Jaume I, Box 224, 12080 Castellón, Spain.
Org Biomol Chem. 2003 Feb 7;1(3):483-7. doi: 10.1039/b210508j.
Kinetic isotope effects have been computed for the Claisen rearrangement of chorismate to prephenate in aqueous solution and in the active site of chorismate mutase from B. subtilus. These included primary 13C and 18O and secondary 3H effects for substitutions at the bond-making and bond-breaking positions. The initial structures of the putative stationary points on the potential energy surface, required for the calculations of isotope effects using the CAMVIB/CAMISO programs, have been selected from hybrid QM/MM molecular dynamical simulations using the DYNAMO program. Refinement of the reactant complex and transition-state structures has been carried out by means of AM1/CHARMM24/TIP3P calculations using the GRACE program, with full gradient relaxation of the position of > 5200 atoms for the enzymic simulations, and with a box containing 711 water molecules for the corresponding reaction in aqueous solution. Comparison of these results, and of gas phase calculations, with experimental data has shown that the chemical rearrangement is largely rate-determining for the enzyme mechanism. Inclusion of the chorismate conformational pre-equilibrium step in the modelled kinetic scheme leads to better agreement between recent experimental data and theoretical predictions. These results provide new information on an important enzymatic transformation, and the key factors responsible for the kinetics of its molecular mechanism are clarified. Treatment of the enzyme and/or solvent environment by means of a large and flexible model is absolutely essential for prediction of kinetic isotope effects.
已计算了在水溶液中以及来自枯草芽孢杆菌的分支酸变位酶活性位点上分支酸向预苯酸的克莱森重排的动力学同位素效应。这些效应包括在成键和断键位置处取代的一级(^{13}C)和(^{18}O)以及二级(^{3}H)效应。使用CAMVIB/CAMISO程序计算同位素效应所需的势能面上假定驻点的初始结构,是从使用DYNAMO程序的QM/MM混合分子动力学模拟中选取的。反应物复合物和过渡态结构的优化是通过使用GRACE程序的AM1/CHARMM24/TIP3P计算进行的,对于酶模拟,对超过5200个原子的位置进行了全梯度弛豫,对于水溶液中的相应反应,使用了一个包含711个水分子的盒子。将这些结果以及气相计算结果与实验数据进行比较表明,化学重排很大程度上决定了酶的作用机制。在模拟动力学方案中纳入分支酸构象预平衡步骤,使得最近的实验数据与理论预测之间的一致性更好。这些结果为一种重要的酶促转化提供了新信息,并阐明了其分子机制动力学的关键因素。通过一个大型且灵活的模型来处理酶和/或溶剂环境对于预测动力学同位素效应绝对至关重要。