Briggs Andrew H, Ades A E, Price Martin J
Health Economics Research Centre, University of Oxford, Institute of Health Sciences, Headington, Oxford OX3 7LF, United Kingdom.
Med Decis Making. 2003 Jul-Aug;23(4):341-50. doi: 10.1177/0272989X03255922.
In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.
在构建医疗干预的决策模型时,通常建议每个机会节点仅使用两个分支,以避免在敏感性分析期间如果分支概率之和不为1可能出现的逻辑不一致。然而,信息可能以无条件的形式自然可得,而以条件形式构建树状图可能会使无条件概率的敏感性分析变得复杂而非简化。当前的指南强调使用概率敏感性分析,并且需要一种方法来提供多个分支上的概率概率,该概率能恰当地表示不确定性,同时满足互斥事件概率之和应为1的要求。作者认为,狄利克雷分布(贝塔分布的多元等价物)适用于此目的,并说明了其用于为马尔可夫模型生成完全概率转移矩阵的用途。此外,他们证明通过采用贝叶斯方法,可以克服观察到感兴趣的转移的计数为零的问题。