Much Barbara, Wahl-Schott Christian, Zong Xiangang, Schneider Angela, Baumann Ludwig, Moosmang Sven, Ludwig Andreas, Biel Martin
Department Pharmazie-Pharmakologie für Naturwissenschaften, Ludwig-Maximilians Universität München, Butenandtstrasse 7, 81377 München, Germany.
J Biol Chem. 2003 Oct 31;278(44):43781-6. doi: 10.1074/jbc.M306958200. Epub 2003 Aug 19.
The coassembly of homologous subunits to heteromeric complexes serves as an important mechanism in generating ion channel diversity. Here, we have studied heteromerization in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family. Using a combination of fluorescence confocal microscopy, coimmunoprecipitation, and electrophysiology we found that upon coexpression in HEK293 cells almost all dimeric combinations of HCN channel subunits give rise to the formation of stable channel complexes in the plasma membrane. We also identified HCN1/HCN2 heteromers in mouse brain indicating that heteromeric channels exist in vivo. Surprisingly, HCN2 and HCN3 did not coassemble to heteromeric channels. This finding indicates that heteromerization requires specific structural determinants that are not present in all HCN channel combinations. Using N-glycosidase F we show that native as well as recombinant HCN channels are glycosylated resulting in a 10-20-kDa shift in the molecular weight. Tunicamycin, an inhibitor of N-linked glycosylation, blocked surface membrane expression of HCN2. Similarly, a mutant HCN2 channel in which the putative N-glycosylation site in the loop between S5 and the pore helix was replaced by glutamine (HCN2N380Q) was not inserted into the plasma membrane and did not yield detectable whole-cell currents. These results indicate that N-linked glycosylation is required for cell surface trafficking of HCN channels. Cotransfection of HCN2N380Q with HCN4, but not with HCN3, rescued cell surface expression of HCN2N380Q. Immunoprecipitation revealed that this rescue was due to the formation of a HCN2N380Q/HCN4 heteromeric channel. Taken together our results indicate that subunit heteromerization and glycosylation are important determinants of the formation of native HCN channels.
同源亚基共组装成异源复合物是产生离子通道多样性的重要机制。在此,我们研究了超极化激活的环核苷酸门控(HCN)通道家族中的异源化。通过荧光共聚焦显微镜、免疫共沉淀和电生理学相结合的方法,我们发现,在HEK293细胞中共表达时,HCN通道亚基的几乎所有二聚体组合都会导致质膜中稳定通道复合物的形成。我们还在小鼠大脑中鉴定出了HCN1/HCN2异源二聚体,表明体内存在异源通道。令人惊讶的是,HCN2和HCN3不能共组装成异源通道。这一发现表明,异源化需要特定的结构决定因素,而并非所有HCN通道组合中都存在这些因素。我们使用N-糖苷酶F表明,天然和重组的HCN通道都发生了糖基化,导致分子量有10 - 20 kDa的变化。衣霉素是一种N-连接糖基化抑制剂,它阻断了HCN2的表面膜表达。同样,一个突变的HCN2通道,其中S5和孔螺旋之间环中的假定N-糖基化位点被谷氨酰胺取代(HCN2N380Q),没有插入质膜,也没有产生可检测到的全细胞电流。这些结果表明,N-连接糖基化是HCN通道细胞表面转运所必需的。HCN2N380Q与HCN4共转染,但不与HCN3共转染,挽救了HCN2N380Q的细胞表面表达。免疫沉淀显示,这种挽救是由于形成了HCN2N380Q/HCN4异源通道。综上所述,我们的结果表明亚基异源化和糖基化是天然HCN通道形成的重要决定因素。