超极化激活的环核苷酸门控(HCN)通道的活性依赖性异源二聚化:N-连接糖基化的作用。
Activity-dependent heteromerization of the hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels: role of N-linked glycosylation.
作者信息
Zha Qinqin, Brewster Amy L, Richichi Cristina, Bender Roland A, Baram Tallie Z
机构信息
Department of Pediatrics, University of California, Irvine, Irvine, California 92697-4475, USA.
出版信息
J Neurochem. 2008 Apr;105(1):68-77. doi: 10.1111/j.1471-4159.2007.05110.x. Epub 2007 Nov 5.
Formation of heteromeric complexes of ion channels via co-assembly of different subunit isoforms provides an important mechanism for enhanced channel diversity. We have previously demonstrated co-association of the hyperpolarization activated cyclic-nucleotide gated (HCN1/HCN2) channel isoforms that was regulated by network (seizure) activity in developing hippocampus. However, the mechanisms that underlie this augmented expression of heteromeric complexes have remained unknown. Glycosylation of the HCN channels has been implicated in the stabilization and membrane expression of heteromeric HCN1/HCN2 constructs in heterologous systems. Therefore, we used in vivo and in vitro systems to test the hypothesis that activity modifies HCN1/HCN2 heteromerization in neurons by modulating the glycosylation state of the channel molecules. Seizure-like activity (SA) increased HCN1/HCN2 heteromerization in hippocampus in vivo as well as in hippocampal organotypic slice cultures. This activity increased the abundance of glycosylated HCN1 but not HCN2-channel molecules. In addition, glycosylated HCN1 channels were preferentially co-immunoprecipitated with the HCN2 isoforms. Provoking SA in vitro in the presence of the N-linked glycosylation blocker tunicamycin abrogated the activity-dependent increase of HCN1/HCN2 heteromerization. Thus, hippocampal HCN1 molecules have a significantly higher probability of being glycosylated after SA, and this might promote a stable heteromerization with HCN2.
通过不同亚基异构体的共组装形成离子通道的异源复合物,为增强通道多样性提供了重要机制。我们之前已经证明,超极化激活的环核苷酸门控(HCN1/HCN2)通道异构体在发育中的海马体中通过网络(癫痫发作)活动进行共缔合。然而,这种异源复合物表达增加的潜在机制仍然未知。HCN通道的糖基化与异源系统中异源HCN1/HCN2构建体的稳定性和膜表达有关。因此,我们使用体内和体外系统来测试这一假设,即活动通过调节通道分子的糖基化状态来改变神经元中HCN1/HCN2的异聚化。癫痫样活动(SA)增加了体内海马体以及海马体器官型切片培养物中HCN1/HCN2的异聚化。这种活动增加了糖基化HCN1的丰度,但没有增加HCN2通道分子的丰度。此外,糖基化的HCN1通道优先与HCN2异构体进行共免疫沉淀。在存在N-连接糖基化阻断剂衣霉素的情况下在体外引发SA,消除了HCN1/HCN2异聚化的活动依赖性增加。因此,海马体HCN1分子在SA后被糖基化的概率显著更高,这可能促进与HCN2的稳定异聚化。
相似文献
J Biol Chem. 2001-3-2
引用本文的文献
Curr Neuropharmacol. 2023
Genes Brain Behav. 2019-2