Wendland Jürgen
Junior Research Group: Growth-control of Fungal Pathogens, Hans-Knöll Institut für Naturstoff-Forschung, Friedrich-Schiller University Jena, Winzerlaer Strasse 10, 07745, Jena, Germany.
Curr Genet. 2003 Nov;44(3):115-23. doi: 10.1007/s00294-003-0436-x. Epub 2003 Aug 19.
Genome sequencing of a large number of organisms has provided a wealth of previously uncharacterized genes. Rapid functional analysis of these genes relies on efficient methods for targeted gene disruption. Gene replacement requires homologous recombination at the target locus. The efficiency of homologous recombination largely depends on the size of the flanking homology regions provided with the disruption cassette. Therefore, the ratio of targeted versus random integration into the genome governs the choice of tools applicable in any organism. PCR-based methods for gene disruption were first reported in Saccharomyces cerevisiae. Over the past years, additional tools have been developed for epitope- or green fluorescent protein-tagging of genes and for promoter exchanges. The attractiveness of these tools led to the generation of PCR modules for use in a wide variety of bacterial and fungal species. The high capacity of in vivo recombination of Sac. cerevisiae and Escherichia coli may also be used for heterologous DNA manipulations. This facilitates the generation of disruption cassettes for organisms that cannot be transformed with very short flanks of target homology regions. Furthermore, laborious cloning procedures, e.g. the generation of point mutations or the deletion of internal domains of genes, can be simplified by using these organisms as workhorses which will advance the general genetic toolkit.
对大量生物体进行的基因组测序已提供了大量以前未被表征的基因。对这些基因进行快速功能分析依赖于有效的靶向基因破坏方法。基因替换需要在目标位点进行同源重组。同源重组的效率在很大程度上取决于破坏盒所提供的侧翼同源区域的大小。因此,靶向整合与随机整合到基因组中的比例决定了适用于任何生物体的工具的选择。基于PCR的基因破坏方法最早在酿酒酵母中被报道。在过去几年中,还开发了用于基因的表位或绿色荧光蛋白标记以及启动子交换的其他工具。这些工具的吸引力导致了可用于多种细菌和真菌物种的PCR模块的产生。酿酒酵母和大肠杆菌在体内的高重组能力也可用于异源DNA操作。这便于为那些不能用非常短的目标同源区域侧翼进行转化的生物体生成破坏盒。此外,通过将这些生物体用作工作母机,可以简化繁琐的克隆程序,例如产生点突变或删除基因的内部结构域,这将推进通用遗传工具包的发展。