Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA.
Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA.
Tissue Eng Part C Methods. 2021 May;27(5):296-306. doi: 10.1089/ten.TEC.2021.0027.
The macromolecule oligo(poly(ethylene glycol) fumarate) (OPF) exhibits promising attributes for creating suitable three-dimensional hydrogel environments to study cell behavior, deliver therapeutics, and serve as a degradable, nonfouling material. However, traditional synthesis techniques are time consuming, contain salt contaminants, and generate significant waste. These issues have been overcome with an alternative, one-pot approach that utilizes inert gas sparging. Departing from previous synthetic schemes that require acid scavengers, inert gas sparging removes byproducts , eliminating significant filtration and postprocessing steps, while allowing a more uniform product. Characterized by nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry, nitrogen sparge synthesis yields an OPF product with greater polymer length than traditional acid scavenger synthesis methods. Furthermore, nitrogen-sparged OPF readily crosslinks using either ultraviolet or thermal initiator methods with or without the addition of short-chain diacrylate units, allowing for greater tunability in hydrogel properties with little to no cytotoxicity. Overall, inert gas sparging provides a longer chain and cleaner polymer product for hydrogel material studies while maintaining degradable characteristics. Impact statement Using nitrogen sparging, we have demonstrated that oligo(poly(ethylene glycol) fumarate) (OPF) can be produced with decreased postprocessing, increased product purity, greater oligomerization, and cell viability. These properties lead to greater tunability in mechanical properties and a more versatile hydrogel for biomedical applications. The simplification of synthesis and elimination of impurities will expand the utility of OPF as a degradable hydrogel for cell culture, tissue engineering, regenerative medicine, and therapeutic delivery, among other applications.
大分子聚(聚乙二醇)富马酸酯(OPF)具有在创建合适的三维水凝胶环境以研究细胞行为、递送治疗剂以及作为可降解、非粘连材料方面的应用前景。然而,传统的合成技术耗时、含有盐杂质,并且会产生大量废物。这些问题已经通过一种替代的、一锅法方法得到解决,该方法利用惰性气体吹气。与需要酸清除剂的先前合成方案不同,惰性气体吹气去除副产物,消除了大量的过滤和后处理步骤,同时允许产品更均匀。通过核磁共振、凝胶渗透色谱和差示扫描量热法对氮吹气合成进行了表征,结果表明,与传统的酸清除剂合成方法相比,OPF 产物的聚合物长度更长。此外,氮吹气合成的 OPF 很容易通过紫外光或热引发剂方法交联,无论是否添加短链二丙烯酸酯单元,都允许在水凝胶性质方面具有更大的可调性,几乎没有细胞毒性。总的来说,惰性气体吹气为水凝胶材料研究提供了更长链和更清洁的聚合物产品,同时保持了可降解的特性。影响说明通过使用氮气吹气,我们已经证明了聚(聚乙二醇)富马酸酯(OPF)可以通过减少后处理、提高产品纯度、增加低聚物化和细胞活力来生产。这些特性导致机械性能的可调性更大,并且对于生物医学应用,如细胞培养、组织工程、再生医学和治疗剂递送等,具有更通用的水凝胶。合成的简化和杂质的消除将扩大 OPF 作为可降解水凝胶的应用范围,用于细胞培养、组织工程、再生医学和治疗剂递送等应用。