Suppr超能文献

小样本偏差与条件最大似然比估计量的校正

Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators.

作者信息

Greenland S

机构信息

Department of Epidemiology, UCLA School of Public Health, Los Angeles, CA 90095-1772, USA.

出版信息

Biostatistics. 2000 Mar;1(1):113-22. doi: 10.1093/biostatistics/1.1.113.

Abstract

A number of small-sample corrections have been proposed for the conditional maximum-likelihood estimator of the odds ratio for matched pairs with a dichotomous exposure. I here contrast the rationale and performance of several corrections, specifically those that generalize easily to multiple conditional logistic regression. These corrections or Bayesian analyses with informative priors may serve as diagnostics for small-sample problems. Points are illustrated with a small exact performance comparison and with an example from a study of electrical wiring and childhood leukemia. The former comparison suggests that small-sample bias may be more prevalent than commonly realized.

摘要

对于具有二分暴露的匹配对的优势比的条件最大似然估计器,已经提出了一些小样本校正方法。在此,我对比了几种校正方法的基本原理和性能,特别是那些易于推广到多重条件逻辑回归的方法。这些校正方法或带有信息先验的贝叶斯分析可以作为小样本问题的诊断方法。通过一个小型精确性能比较以及一项关于电线与儿童白血病研究的实例来说明要点。前一个比较表明,小样本偏差可能比通常意识到的更为普遍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验