Suppr超能文献

一种用于小样本纵向有序数据的比例优势模型的偏倚降低广义估计方程方法。

A bias-reduced generalized estimating equation approach for proportional odds models with small-sample longitudinal ordinal data.

机构信息

Biostatistics Center, Shionogi & Co., Ltd., Osaka, Japan.

Department of Biostatistics, Kyoto University School of Public Health, Kyoto, Japan.

出版信息

BMC Med Res Methodol. 2024 Jun 28;24(1):140. doi: 10.1186/s12874-024-02259-6.

Abstract

BACKGROUND

Longitudinal ordinal data are commonly analyzed using a marginal proportional odds model for relating ordinal outcomes to covariates in the biomedical and health sciences. The generalized estimating equation (GEE) consistently estimates the regression parameters of marginal models even if the working covariance structure is misspecified. For small-sample longitudinal binary data, recent studies have shown that the bias of regression parameters may result from the GEE and have addressed the issue by applying Firth's adjustment for the likelihood score equation to the GEE as if generalized estimating functions were likelihood score functions. In this manuscript, for the proportional odds model for longitudinal ordinal data, the small-sample properties of the GEE were investigated, and a bias-reduced GEE (BR-GEE) was derived.

METHODS

By applying the adjusted function originally derived for the likelihood score function of the proportional odds model to the GEE, we produced the BR-GEE. We investigated the small-sample properties of both GEE and BR-GEE through simulation and applied them to a clinical study dataset.

RESULTS

In simulation studies, the BR-GEE had a bias closer to zero, smaller root mean square error than the GEE with coverage probability of confidence interval near or above the nominal level. The simulation also showed that BR-GEE maintained a type I error rate near or below the nominal level.

CONCLUSIONS

For the analysis of longitudinal ordinal data involving a small number of subjects, the BR-GEE is advantageous for obtaining estimates of the regression parameters of marginal proportional odds models.

摘要

背景

在生物医学和健康科学领域,为了将有序结果与协变量相关联,通常使用边缘比例优势模型来分析纵向有序数据。即使工作协方差结构被错误指定,广义估计方程(GEE)也能一致地估计边缘模型的回归参数。对于小样本纵向二分类数据,最近的研究表明,回归参数的偏差可能是由于 GEE 引起的,并通过将 Firth 调整应用于似然评分方程的 GEE 来解决这个问题,就好像广义估计函数是似然评分函数一样。在本文中,对于纵向有序数据的比例优势模型,研究了 GEE 的小样本性质,并推导出了一种偏差减小的 GEE(BR-GEE)。

方法

通过将最初为比例优势模型的似然评分函数推导的调整函数应用于 GEE,我们得到了 BR-GEE。我们通过模拟研究了 GEE 和 BR-GEE 的小样本性质,并将它们应用于一个临床研究数据集。

结果

在模拟研究中,BR-GEE 的偏差更接近零,均方根误差更小,置信区间的覆盖率接近或高于名义水平。模拟还表明,BR-GEE 保持了接近或低于名义水平的Ⅰ型错误率。

结论

对于涉及少量受试者的纵向有序数据分析,BR-GEE 有利于获得边缘比例优势模型回归参数的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a7/11212405/e7d06d3df399/12874_2024_2259_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验