Jain Arvind K, Strawderman Robert L
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, USA.
Biostatistics. 2002 Mar;3(1):101-18. doi: 10.1093/biostatistics/3.1.101.
The modeling of lifetime (i.e. cumulative) medical cost data in the presence of censored follow-up is complicated by induced informative censoring, rendering standard survival analysis tools invalid. With few exceptions, recently proposed nonparametric estimators for such data do not extend easily to handle covariate information. We propose to model the hazard function for lifetime cost endpoints using an adaptation of the HARE methodology (Kooperberg, Stone, and Truong, Journal of the American Statistical Association, 1995, 90, 78-94). Linear splines and their tensor products are used to adaptively build a model that incorporates covariates and covariate-by-cost interactions without restrictive parametric assumptions. The informative censoring problem is handled using inverse probability of censoring weighted estimating equations. The proposed method is illustrated using simulation and also with data on the cost of dialysis for patients with end-stage renal disease.
在存在删失随访的情况下,对终身(即累积)医疗成本数据进行建模会因诱导性信息删失而变得复杂,这使得标准生存分析工具失效。除了少数例外情况,最近针对此类数据提出的非参数估计量不容易扩展以处理协变量信息。我们建议使用HARE方法(库珀伯格、斯通和特鲁昂,《美国统计协会杂志》,1995年,第90卷,第78 - 94页)的一种改编形式,对终身成本终点的风险函数进行建模。线性样条及其张量积用于自适应构建一个模型,该模型纳入了协变量以及协变量与成本的交互作用,且无需严格的参数假设。使用删失加权估计方程的逆概率来处理信息删失问题。通过模拟以及终末期肾病患者透析成本的数据说明了所提出的方法。