Suppr超能文献

半竞争风险数据的回归建模

Regression modeling of semicompeting risks data.

作者信息

Peng Limin, Fine Jason P

机构信息

Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Biometrics. 2007 Mar;63(1):96-108. doi: 10.1111/j.1541-0420.2006.00621.x.

Abstract

Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event without covariates. In this article, we incorporate covariates and formulate their effects on the survival function of the intermediate event via a functional regression model. To accommodate informative censoring, a time-dependent copula model is proposed in the observable region of the data which is more flexible than standard parametric copula models for the dependence between the events. The model permits estimation of the marginal distribution under weaker assumptions than in previous work on competing risks data. New nonparametric estimators for the marginal and dependence models are derived from nonlinear estimating equations and are shown to be uniformly consistent and to converge weakly to Gaussian processes. Graphical model checking techniques are presented for the assumed models. Nonparametric tests are developed accordingly, as are inferences for parametric submodels for the time-varying covariate effects and copula parameters. A novel time-varying sensitivity analysis is developed using the estimation procedures. Simulations and an AIDS data analysis demonstrate the practical utility of the methodology.

摘要

半竞争风险数据在具有中间终点的临床试验中经常遇到,这些中间终点会因信息性失访而受到相依删失的影响。与竞争风险数据不同,失访可能不会被中间事件相依删失。最近,人们对这些数据的关注有所增加,特别是在无协变量情况下对中间事件边际分布的推断。在本文中,我们纳入协变量,并通过函数回归模型来阐述它们对中间事件生存函数的影响。为了适应信息性删失,我们在数据的可观测区域提出了一个时变Copula模型,该模型对于事件之间的相依性比标准参数Copula模型更加灵活。该模型允许在比以往竞争风险数据研究中更弱的假设下估计边际分布。边际模型和相依性模型的新非参数估计量是从非线性估计方程推导出来的,并且被证明是一致收敛的,并且弱收敛于高斯过程。我们给出了针对假设模型的图形模型检验技术。相应地,我们开发了非参数检验,以及针对时变协变量效应和Copula参数的参数子模型的推断。利用估计程序开发了一种新颖的时变敏感性分析。模拟和艾滋病数据分析证明了该方法的实际效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验