Suppr超能文献

删失医疗费用的线性回归分析

Linear regression analysis of censored medical costs.

作者信息

Lin D Y

机构信息

Department of Biostatistics, Box 357232, University of Washington, Seattle, WA 98195, USA.

出版信息

Biostatistics. 2000 Mar;1(1):35-47. doi: 10.1093/biostatistics/1.1.35.

Abstract

This paper deals with the problem of linear regression for medical cost data when some study subjects are not followed for the full duration of interest so that their total costs are unknown. Standard survival analysis techniques are ill-suited to this type of censoring. The familiar normal equations for the least-squares estimation are modified in several ways to properly account for the incompleteness of the data. The resulting estimators are shown to be consistent and asymptotically normal with easily estimated variance-covariance matrices. The proposed methodology can be used when the cost database contains only the total costs for those with complete follow-up. More efficient estimators are available when the cost data are recorded in multiple time intervals. A study on the medical cost for ovarian cancer is presented.

摘要

本文探讨了医学成本数据的线性回归问题,即一些研究对象未被随访至感兴趣的整个时间段,因此其总成本未知。标准的生存分析技术不适用于此类删失情况。用于最小二乘估计的常见正规方程在几个方面进行了修改,以恰当地考虑数据的不完整性。结果表明,所得估计量是一致的,并且渐近正态,其方差协方差矩阵易于估计。当成本数据库仅包含有完整随访对象的总成本时,可使用所提出的方法。当成本数据按多个时间间隔记录时,可得到更有效的估计量。本文还给出了一项关于卵巢癌医疗成本的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验