Suppr超能文献

通过神经元群体实现最优噪声辅助信号传输。

Optimal noise-aided signal transmission through populations of neurons.

作者信息

Hoch Thomas, Wenning Gregor, Obermayer Klaus

机构信息

Department of Electrical Engineering and Computer Science, Technical University of Berlin, Franklinstrasse 28/29, 10587 Berlin, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011911. doi: 10.1103/PhysRevE.68.011911. Epub 2003 Jul 29.

Abstract

Metabolic considerations and neurophysiological measurements indicate that biological neural systems prefer information transmission via many parallel low intensity channels, compared to few high intensity ones [S. B. Laughlin et al., Nature Neurosci. 1, 36 (1998)]. Furthermore, cortical neurons are exposed to a considerable amount of synaptic background activity, which increases the neurons' conductance and leads to a fluctuating membrane potential that, on average, is close to the threshold [A. Destexhe and D. Paré, J. Neurophysiol. 81, 1531 (1999)]. Recent studies have shown that noise can improve the transmission of subthreshold signals in populations of neurons, e.g., if their response is pooled. In general, the optimal noise level depends on the stimulus distribution and on the number of neurons in the population. In this contribution we show that for a large enough number of neurons the latter dependency becomes weak, such that the optimal noise level becomes almost independent of the number of neurons in the population. First we investigate a binary threshold model of neurons. We derive an analytic expression for the optimal noise level at each single neuron, which-for a large enough population size-depends only on quantities that are locally available to a single neuron. Using numerical simulations, we then verify the weak dependence of the optimal noise level on population size in a more realistic framework using leaky integrate-and-fire as well as Hodgkin-Huxley-type model neurons. Next we construct a cost function, where quality of information transmission is traded against its metabolic costs. Again we find that-for subthreshold signals-there is an optimal noise level which maximizes this cost. This noise level, however, is almost independent of the number of neurons, even for small population sizes, as numerical simulations using the Hodgkin-Huxley model show. Since the dependence of the optimal noise level on population size is weak for large enough populations, local neural adaptation is sufficient to adjust the level of noise to its optimal value.

摘要

代谢方面的考量和神经生理学测量表明,与少数高强度通道相比,生物神经系统更倾向于通过许多并行的低强度通道进行信息传输[S. B. 劳克林等人,《自然神经科学》1, 36 (1998)]。此外,皮层神经元会受到相当数量的突触背景活动的影响,这会增加神经元的电导,并导致膜电位波动,其平均值接近阈值[A. 德斯特克斯和D. 帕雷,《神经生理学杂志》81, 1531 (1999)]。最近的研究表明,噪声可以改善神经元群体中亚阈值信号的传输,例如,如果将它们的响应进行汇总。一般来说,最佳噪声水平取决于刺激分布和群体中的神经元数量。在本论文中,我们表明,对于足够多的神经元,后者的依赖性会变弱,使得最佳噪声水平几乎与群体中的神经元数量无关。首先,我们研究神经元的二元阈值模型。我们推导出每个单个神经元的最佳噪声水平的解析表达式,对于足够大的群体规模,该表达式仅取决于单个神经元局部可获取的量。然后,我们使用数值模拟,在更现实的框架中,使用漏电积分发放模型以及霍奇金 - 赫胥黎型模型神经元,验证了最佳噪声水平对群体规模的弱依赖性。接下来,我们构建一个成本函数,其中信息传输质量与其代谢成本进行权衡。我们再次发现,对于亚阈值信号,存在一个使该成本最大化的最佳噪声水平。然而,正如使用霍奇金 - 赫胥黎模型的数值模拟所示,即使对于小群体规模,这个噪声水平几乎也与神经元数量无关。由于对于足够大的群体,最佳噪声水平对群体规模的依赖性较弱,局部神经适应足以将噪声水平调整到其最佳值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验