Beiran Manuel, Kruscha Alexandra, Benda Jan, Lindner Benjamin
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
Group for Neural Theory, Laboratoire de Neurosciences Cognitives, Département Études Cognitives, École Normale Supérieure, INSERM, PSL Research University, Paris, France.
J Comput Neurosci. 2018 Apr;44(2):189-202. doi: 10.1007/s10827-017-0674-4. Epub 2017 Dec 8.
We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.
我们比较了由两种类型的非耦合神经元群体对随时间变化信号的信息传输,这两种群体在变异性来源上有所不同:i)一个同质群体,其单元接收独立噪声;ii)一个确定性异质群体,其中每个单元表现出不同的基线发放率(“无序”)。使两种变异性来源在数量上具有可比性的标准是,两个系统的峰峰间隔分布相同。使用泄漏积分发放神经元进行的数值模拟表明,作为阈上随机共振的一个特殊情况,非零量的噪声或无序分别使同质和异质系统的编码效率最大化。因此,我们的发现表明,异质性对于神经元群体可以产生与动态噪声类似的有益效果。最优噪声/无序取决于系统规模以及刺激的特性,如强度或截止频率。我们发现,弱刺激由无噪声的异质群体能更好地编码,而对于强刺激,在中等噪声水平之前,同质群体优于等效的异质系统。此外,我们推导了在非常强的噪声以及固有噪声或异质性消失的情况下相干函数的解析表达式,这些表达式预测了最优噪声强度的存在。我们的结果表明,根据信号类型,噪声以及异质性都可以提高神经元群体的编码性能。